View Diff on GitHub
Highlights
今回の差分は、Azure AI Searchに関するドキュメント全般に渡る軽微な更新を示しています。更新内容は主に以下の3つに分類されます:
- ドキュメントのトピックや日付の変更
- 説明・手順の明確化
- 画像ファイルやリンク、コードサンプルの更新
新機能
- 新しいチュートリアルや手順に関する説明の追加(特にRAGに関連するもの)。
- ベクトルインデックスやサポートされている地域に関する最新情報の追加。
破壊的変更
その他アップデート
- ドキュメントの分類(conceptualからconcept-articleへの変更)
- クロウド地域サポートや制限に関する情報の整理と更新
- 画像やリンクの最新情報への更新
Insights
今回の更新では、Azure AI Searchに関する多くのドキュメントが対象となっていました。主な変更はドキュメントのトピックや日付の更新であり、これらの変更は主にドキュメントの最新性を確保し、利用者に最新情報を提供することを目的としています。
例えば、日付の変更やトピックの分類の変化は、ドキュメントが最新のものであることを保証し、利用者が信頼性の高い情報にアクセスできるようにするためのものです。 特に重要な更新として以下が挙げられます:
- Transientエラーに関する説明の整理:Azureポータルでのインデクサーのエラー管理手順が明確化されたことで、ユーザーはエラーの特定と解決がしやすくなりました。
- Pythonサンプルの追加と更新:新しいRAGに関連するチュートリアルの追加は、ユーザーが最新の技術を利用してAzure AI Searchを効果的に活用するためのリソースを広げます。
- 地域サポートと制限の明確化:Azure AI Searchの利用可能な地域や機能に関する情報が整理されたことにより、ユーザーは自分の要件に合った最適な地域を選択しやすくなります。
これらの変更は、ユーザーがより効率的にAzure AI Searchを使用し、結果的に自らのプロジェクトやビジネスにおいてより高い成果を出せるようになることを目的としています。
Summary Table
Modified Contents
articles/search/cognitive-search-common-errors-warnings.md
Diff
@@ -9,8 +9,8 @@ ms.author: heidist
ms.service: cognitive-search
ms.custom:
- ignite-2023
-ms.topic: conceptual
-ms.date: 03/27/2024
+ms.topic: reference
+ms.date: 09/19/2024
---
# Troubleshooting common indexer errors and warnings in Azure AI Search
@@ -32,29 +32,28 @@ Warnings don't stop indexing, but they do indicate conditions that could result
To verify an indexer status and identify errors in the Azure portal, follow the steps below:
-1. Navigate to the Azure portal and locate your AI Search service.
-1. Once you're in the AI Search service, click on the 'Indexers' tab.
-1. From the list of indexers, identify the specific indexer you wish to verify.
-1. Under the 'Execution History' column, click on the 'Status' hyperlink associated with the selected indexer.
-1. If there's an error, hover over the error message. A pane will appear on the right side of your screen displaying detailed information about the error.
+1. Sign in to the [Azure portal](https://portal.azure.com/) and [find your search service](https://portal.azure.com/#blade/HubsExtension/BrowseResourceBlade/resourceType/Microsoft.Search%2FsearchServices).
-## Transient errors
+1. On the left, expand **Search Management** > **Indexers** and select an indexer.
-For various reasons, such as transient network communication interruptions, timeouts from long-running processes, or specific document nuances, it's common to encounter transient errors or warnings during indexer runs. However, these errors are temporary and should be resolved in subsequent indexer runs.
+1. Under **Execution History**, select the status. All statuses, including Success, have details about the execution.
-To manage these errors effectively, it is recommended [putting your indexer on a schedule](search-howto-schedule-indexers.md), for instance, to run every five minutes. This means the next run will commence five minutes after the completion of the first run, adhering to the [maximum runtime limit](search-limits-quotas-capacity.md#indexer-limits). Regularly scheduled runs help to rectify any transient errors or warnings swiftly.
+1. If there's an error, hover over the error message. A pane appears on the right side of your screen displaying detailed information about the error.
-If you notice an error persisting over multiple indexer runs, it's likely not a transient issue. In such cases, refer to the list below for potential solutions. Please note, always ensure your indexing schedule aligns with the limitations outlined in our indexer limits guide.
+## Transient errors
+For various reasons, such as transient network communication interruptions, timeouts from long-running processes, or specific document nuances, it's common to encounter transient errors or warnings during indexer runs. However, these errors are temporary and should be resolved in subsequent indexer runs.
-## Error properties
+To manage these errors effectively, we recommend [putting your indexer on a schedule](search-howto-schedule-indexers.md), for instance, to run every five minutes, where the next run commences five minutes after completing the first run, adhering to the [maximum runtime limit](search-limits-quotas-capacity.md#indexer-limits) on your service. Regularly scheduled runs help rectify transient errors or warnings.
-Beginning with API version `2019-05-06`, item-level Indexer errors and warnings are structured to provide increased clarity around causes and next steps. They contain the following properties:
+If an error persists over multiple indexer runs, it's likely not a transient issue. In such cases, refer to the list below for potential solutions.
+
+## Error properties
| Property | Description | Example |
| --- | --- | --- |
-| Key | The document ID of the document impacted by the error or warning. | `https://<storageaccount>.blob.core.windows.net/jfk-1k/docid-32112954.pdf`|
-| Name | The operation name describing where the error or warning occurred. This is generated by the following structure: `[category]`.`[subcategory]`.`[resourceType]`.`[resourceName]` | `DocumentExtraction.azureblob.myBlobContainerName` `Enrichment.WebApiSkill.mySkillName` `Projection.SearchIndex.OutputFieldMapping.myOutputFieldName` `Projection.SearchIndex.MergeOrUpload.myIndexName` `Projection.KnowledgeStore.Table.myTableName` |
+| Key | The ID of the document impacted by the error or warning. | Azure Storage example, where the default ID is the metadata storage path: `https://<storageaccount>.blob.core.windows.net/jfk-1k/docid-32112954.pdf`|
+| Name | The operation causing the error or warning. This is generated by the following structure: `[category]`.`[subcategory]`.`[resourceType]`.`[resourceName]` | `DocumentExtraction.azureblob.myBlobContainerName` `Enrichment.WebApiSkill.mySkillName` `Projection.SearchIndex.OutputFieldMapping.myOutputFieldName` `Projection.SearchIndex.MergeOrUpload.myIndexName` `Projection.KnowledgeStore.Table.myTableName` |
| Message | A high-level description of the error or warning. | `Could not execute skill because the Web Api request failed.` |
| Details | Specific information that might be helpful in diagnosing the issue, such as the WebApi response if executing a custom skill failed. | `link-cryptonyms-list - Error processing the request record : System.ArgumentNullException: Value cannot be null. Parameter name: source at System.Linq.Enumerable.All[TSource](IEnumerable 1 source, Func 2 predicate) at Microsoft.CognitiveSearch.WebApiSkills.JfkWebApiSkills. ...rest of stack trace...` |
| DocumentationLink | A link to relevant documentation with detailed information to debug and resolve the issue. This link will often point to one of the below sections on this page. | `https://go.microsoft.com/fwlink/?linkid=2106475` |
@@ -95,8 +94,8 @@ Indexer read the document from the data source, but there was an issue convertin
| The document key is missing | `Document key cannot be missing or empty` | Ensure all documents have valid document keys. The document key is determined by setting the 'key' property as part of the [index definition](/rest/api/searchservice/indexes/create#request-body). Indexers emit this error when the property flagged as the 'key' can't be found on a particular document. |
| The document key is invalid | `Invalid document key. Keys can only contain letters, digits, underscore (_), dash (-), or equal sign (=). ` | Ensure all documents have valid document keys. Review [Indexing Blob Storage](search-howto-indexing-azure-blob-storage.md) for more details. If you're using the blob indexer, and your document key is the `metadata_storage_path` field, make sure that the indexer definition has a [base64Encode mapping function](search-indexer-field-mappings.md?tabs=rest#base64encode-function) with `parameters` equal to `null`, instead of the path in plain text. |
| The document key is invalid | `Document key cannot be longer than 1024 characters` | Modify the document key to meet the validation requirements. |
-| Could not apply field mapping to a field | `Could not apply mapping function 'functionName' to field 'fieldName'. Array cannot be null. Parameter name: bytes` | Double check the [field mappings](search-indexer-field-mappings.md) defined on the indexer, and compare with the data of the specified field of the failed document. It might be necessary to modify the field mappings or the document data. |
-| Could not read field value | `Could not read the value of column 'fieldName' at index 'fieldIndex'. A transport-level error has occurred when receiving results from the server. (provider: TCP Provider, error: 0 - An existing connection was forcibly closed by the remote host.)` | These errors are typically due to unexpected connectivity issues with the data source's underlying service. Try running the document through your indexer again later. |
+| Couldn't apply field mapping to a field | `Could not apply mapping function 'functionName' to field 'fieldName'. Array cannot be null. Parameter name: bytes` | Double check the [field mappings](search-indexer-field-mappings.md) defined on the indexer, and compare with the data of the specified field of the failed document. It might be necessary to modify the field mappings or the document data. |
+| Couldn't read field value | `Could not read the value of column 'fieldName' at index 'fieldIndex'. A transport-level error has occurred when receiving results from the server. (provider: TCP Provider, error: 0 - An existing connection was forcibly closed by the remote host.)` | These errors are typically due to unexpected connectivity issues with the data source's underlying service. Try running the document through your indexer again later. |
<a name="Could not map output field '`xyz`' to search index due to deserialization problem while applying mapping function '`abc`'"></a>
@@ -189,7 +188,7 @@ The document was read and processed, but the indexer couldn't add it to the sear
| Trouble connecting to the target index (that persists after retries) because the service is under other load, such as querying or indexing. | Failed to establish connection to update index. Search service is under heavy load. | [Scale up your search service](search-capacity-planning.md)
| Search service is being patched for service update, or is in the middle of a topology reconfiguration. | Failed to establish connection to update index. Search service is currently down/Search service is undergoing a transition. | Configure service with at least three replicas for 99.9% availability per [SLA documentation](https://azure.microsoft.com/support/legal/sla/search/v1_0/)
| Failure in the underlying compute/networking resource (rare) | Failed to establish connection to update index. An unknown failure occurred. | Configure indexers to [run on a schedule](search-howto-schedule-indexers.md) to pick up from a failed state.
-| An indexing request made to the target index wasn't acknowledged within a timeout period due to network issues. | Could not establish connection to the search index in a timely manner. | Configure indexers to [run on a schedule](search-howto-schedule-indexers.md) to pick up from a failed state. Additionally, try lowering the indexer [batch size](/rest/api/searchservice/indexers/create#indexingparameters) if this error condition persists.
+| An indexing request made to the target index wasn't acknowledged within a timeout period due to network issues. | Couldn't establish connection to the search index in a timely manner. | Configure indexers to [run on a schedule](search-howto-schedule-indexers.md) to pick up from a failed state. Additionally, try lowering the indexer [batch size](/rest/api/searchservice/indexers/create#indexingparameters) if this error condition persists.
<a name="could-not-index-document-because-the-indexer-data-to-index-was-invalid"></a>
@@ -225,9 +224,9 @@ This error occurs when the indexer is attempting to [project data into a knowled
| Reason | Details/Example | Resolution |
| --- | --- | --- |
-| Could not update projection blob `'blobUri'` in container `'containerName'` |The specified container doesn't exist. | The indexer checks if the specified container has been previously created and will create it if necessary, but it only performs this check once per indexer run. This error means that something deleted the container after this step. To resolve this error, try this: leave your storage account information alone, wait for the indexer to finish, and then rerun the indexer. |
-| Could not update projection blob `'blobUri'` in container `'containerName'` |Unable to write data to the transport connection: An existing connection was forcibly closed by the remote host. | This is expected to be a transient failure with Azure Storage and thus should be resolved by rerunning the indexer. If you encounter this error consistently, file a [support ticket](https://portal.azure.com/#create/Microsoft.Support) so it can be investigated further. |
-| Could not update row `'projectionRow'` in table `'tableName'` | The server is busy. | This is expected to be a transient failure with Azure Storage and thus should be resolved by rerunning the indexer. If you encounter this error consistently, file a [support ticket](https://portal.azure.com/#create/Microsoft.Support) so it can be investigated further. |
+| Couldn't update projection blob `'blobUri'` in container `'containerName'` |The specified container doesn't exist. | The indexer checks if the specified container has been previously created and will create it if necessary, but it only performs this check once per indexer run. This error means that something deleted the container after this step. To resolve this error, try this: leave your storage account information alone, wait for the indexer to finish, and then rerun the indexer. |
+| Couldn't update projection blob `'blobUri'` in container `'containerName'` |Unable to write data to the transport connection: An existing connection was forcibly closed by the remote host. | This is expected to be a transient failure with Azure Storage and thus should be resolved by rerunning the indexer. If you encounter this error consistently, file a [support ticket](https://portal.azure.com/#create/Microsoft.Support) so it can be investigated further. |
+| Couldn't update row `'projectionRow'` in table `'tableName'` | The server is busy. | This is expected to be a transient failure with Azure Storage and thus should be resolved by rerunning the indexer. If you encounter this error consistently, file a [support ticket](https://portal.azure.com/#create/Microsoft.Support) so it can be investigated further. |
<a name="skill-throttled"></a>
@@ -237,7 +236,7 @@ Skill execution failed because the call to Azure AI services was throttled. Typi
## `Error: Expected IndexAction metadata`
-An 'Expected IndexAction metadata' error means when the indexer attempted to read the document to identify what action should be taken, it did not find any corresponding metadata on the document. Typically, this error occurs when the indexer has an annotation cache added or removed without resetting the indexer. To address this, you should [reset and rerun the indexer](search-howto-run-reset-indexers.md).
+An 'Expected IndexAction metadata' error means when the indexer attempted to read the document to identify what action should be taken, it didn't find any corresponding metadata on the document. Typically, this error occurs when the indexer has an annotation cache added or removed without resetting the indexer. To address this, you should [reset and rerun the indexer](search-howto-run-reset-indexers.md).
<a name="could-not-execute-skill-because-a-skill-input-was-invalid"></a>
@@ -379,7 +378,7 @@ Output field mappings that reference non-existent/null data will produce warning
| Reason | Details/Example | Resolution |
| --- | --- | --- |
-| Cannot iterate over non-array | "Cannot iterate over non-array `/document/normalized_images/0/imageCelebrities/0/detail/celebrities`." | This error occurs when the output isn't an array. If you think the output should be an array, check the indicated output source field path for errors. For example, you might have a missing or extra `*` in the source field name. It's also possible that the input to this skill is null, resulting in an empty array. Find similar details in [Skill Input was Invalid](cognitive-search-common-errors-warnings.md#warning-skill-input-was-invalid) section. |
+| Can't iterate over non-array | "Cannot iterate over non-array `/document/normalized_images/0/imageCelebrities/0/detail/celebrities`." | This error occurs when the output isn't an array. If you think the output should be an array, check the indicated output source field path for errors. For example, you might have a missing or extra `*` in the source field name. It's also possible that the input to this skill is null, resulting in an empty array. Find similar details in [Skill Input was Invalid](cognitive-search-common-errors-warnings.md#warning-skill-input-was-invalid) section. |
| Unable to select `0` in non-array | "Unable to select `0` in non-array `/document/pages`." | This could happen if the skills output doesn't produce an array and the output source field name has array index or `*` in its path. Double check the paths provided in the output source field names and the field value for the indicated field name. Find similar details in [Skill Input was Invalid](cognitive-search-common-errors-warnings.md#warning-skill-input-was-invalid) section. |
<a name="the-data-change-detection-policy-is-configured-to-use-key-column-x"></a>
Summary
{
"modification_type": "minor update",
"modification_title": "コグニティブ サーチの一般的なエラーと警告に関する記事の更新"
}
Explanation
このコードの変更は、Azure AI Searchサービスに関するドキュメントの軽微な更新を反映しています。具体的には、ドキュメントのトピックが「conceptual」から「reference」に変更され、日付も2024年3月27日から2024年9月19日に更新されました。
内容的には、インデクサーの状態を確認し、Azureポータル内でエラーを識別するための手順が明確にされています。手順の中には、検索サービスへのサインインから、インデクサータブの選択、状態の確認、エラーに関する詳細の表示など、ユーザーが直面する可能性のある一般的なエラーや警告についての具体的な説明が含まれています。
また、Transientエラーに関する説明が整理され、効率的なエラー管理のためのインデクサーのスケジュール設定が強調されています。さらに、エラーのプロパティに関する詳細な情報も更新され、エラー解決のための手順やリンクが提供されている点が改善されています。
この更新は、ドキュメントユーザーがAzure AI Searchのインデクサー関連のエラーをより理解し、トラブルシューティングを行いやすくすることを目的としています。
articles/search/cognitive-search-predefined-skills.md
Diff
@@ -8,19 +8,19 @@ ms.service: cognitive-search
ms.custom:
- ignite-2023
- build-2024
-ms.topic: conceptual
-ms.date: 10/28/2023
+ms.topic: concept-article
+ms.date: 09/19/2024
---
# Skills for extra processing during indexing (Azure AI Search)
-This article describes the skills provided with Azure AI Search that you can include in a [skillset](cognitive-search-working-with-skillsets.md) to access external processing.
+This article describes the skills in Azure AI Search that you can include in a [skillset](cognitive-search-working-with-skillsets.md) to access external processing.
A *skill* provides an atomic operation that transforms content in some way. Often, it's an operation that recognizes or extracts text, but it can also be a utility skill that reshapes the enrichments that are already created. Typically, the output is text-based so that it can be used in [full text search](search-lucene-query-architecture.md) or vectors used in [vector search](vector-search-overview.md).
Skills are organized into categories:
-* A *built-in skill* wraps API calls to an Azure resource, where the inputs, outputs, and processing steps are well understood. For skills that call an Azure AI resource, the connection is made over the internal network. For skills that call Azure OpenAI, you provide the connection information that the search service uses to connect to the resource. A small quantity of processing is non-billable, but at larger volumes, processing is billable. Built-in skills are based on pretrained models from Microsoft, which means you can't train the model using your own training data.
+* A *built-in skill* wraps API calls to an Azure AI resource, where the inputs, outputs, and processing steps are well understood. For skills that call an Azure AI resource, the connection is made over the internal network. For skills that call Azure OpenAI, you provide the connection information that the search service uses to connect to the resource. A small quantity of processing is non-billable, but at larger volumes, processing is billable. Built-in skills are based on pretrained models from Microsoft, which means you can't train the model using your own training data.
* A *custom skill* provides custom code that executes externally to the search service. It's accessed through a URI. Custom code is often made available through an Azure function app. To attach an open-source or third-party vectorization model, use a custom skill.
Summary
{
"modification_type": "minor update",
"modification_title": "コグニティブ サーチの定義済みスキルに関する記事の更新"
}
Explanation
この変更は、Azure AI Searchにおける定義済みスキルに関するドキュメントの軽微な更新を反映しています。具体的には、ドキュメントのトピックが「conceptual」から「concept-article」に変更され、日付も2023年10月28日から2024年9月19日に更新されました。
記事の内容では、Azure AI Searchに含まれるスキルをskillsetに追加して外部処理を利用する方法が説明されています。スキルは、コンテンツを変換する原子的な操作を提供し、通常はテキストの認識や抽出を行います。また、モデルはMicrosoftの事前トレーニング済みのものであり、ユーザーが独自のトレーニングデータを用いてモデルを訓練することはできません。
さらに、スキルの種類として「組み込みスキル」と「カスタムスキル」が紹介されており、それぞれの定義と使用方法が詳述されています。特に、組み込みスキルはAzureリソースへのAPI呼び出しをラップし、カスタムスキルは検索サービスの外部で実行されるカスタムコードを提供します。
この更新により、ユーザーはAzure AI Searchのスキルを活用する際の理解を深めることができるようになります。
articles/search/media/vector-search-index-size/deployment-details.png
Summary
{
"modification_type": "minor update",
"modification_title": "ベクター検索インデックスサイズに関するデプロイメントの詳細画像の更新"
}
Explanation
このコードの変更は、Azure AI Searchに関連する「ベクター検索インデックスサイズ」のデプロイメント詳細を示す画像ファイルに対するものです。具体的には、画像ファイル自体に変更はありませんが、ファイルが修正されたことを示しています。
この画像は、ベクター検索におけるインデックスサイズのデプロイメントの状況を視覚的に示すために使用されます。ドキュメントのコンテンツに対する補足情報として重要な役割を果たしています。画像内容の具体的な変更がないため、詳細な変更内容は不明ですが、全体的な内容を最新の情報に保つためのメンテナンスが行われたと考えられます。
articles/search/media/vector-search-index-size/resource-group-deployments.png
Summary
{
"modification_type": "minor update",
"modification_title": "ベクター検索インデックスサイズに関するリソースグループのデプロイメント画像の更新"
}
Explanation
この変更は、Azure AI Searchに関連する「ベクター検索インデックスサイズ」のリソースグループデプロイメントを示す画像ファイルに対するものです。特に、画像そのものには変更はないものの、ファイルが修正されたことを示しています。
この画像は、リソースグループ内でのデプロイメントの構成や状況について視覚的に説明するために利用されます。具体的なビジュアルコンテンツに変更がないため、詳細な内容の変更は不明ですが、ドキュメント全体の整合性を保つためのメンテナンスが行われたと考えられます。最終的に、ユーザーが情報を正確に理解できるようにすることが目的です。
articles/search/query-lucene-syntax.md
Diff
@@ -9,13 +9,13 @@ ms.author: beloh
ms.service: cognitive-search
ms.custom:
- ignite-2023
-ms.topic: conceptual
-ms.date: 02/22/2024
+ms.topic: concept-article
+ms.date: 09/19/2024
---
# Lucene query syntax in Azure AI Search
-When creating queries in Azure AI Search, you can opt for the full [Lucene Query Parser](https://lucene.apache.org/core/6_6_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html) syntax for specialized query forms: wildcard, fuzzy search, proximity search, regular expressions. Much of the Lucene Query Parser syntax is [implemented intact in Azure AI Search](search-lucene-query-architecture.md), except for *range searches, which are constructed through **`$filter`** expressions.
+When creating queries in Azure AI Search, you can opt for the full [Lucene Query Parser](https://lucene.apache.org/core/6_6_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html) syntax for specialized query forms: wildcard, fuzzy search, proximity search, regular expressions. Much of the Lucene Query Parser syntax is [implemented intact in Azure AI Search](search-lucene-query-architecture.md), except for *range searches*, which are constructed through **`$filter`** expressions.
To use full Lucene syntax, set the queryType to `full` and pass in a query expression patterned for wildcard, fuzzy search, or one of the other query forms supported by the full syntax. In REST, query expressions are provided in the **`search`** parameter of a [Search Documents (REST API)](/rest/api/searchservice/documents/search-post) request.
Summary
{
"modification_type": "minor update",
"modification_title": "Luceneクエリ構文に関する文書の更新"
}
Explanation
この変更は、Azure AI SearchにおけるLuceneクエリ構文に関するテキストファイル「query-lucene-syntax.md」に対するものです。具体的には、いくつかの文言が修正されており、全体的な内容や整理が行われています。
変更点としては、ms.topic
の値が「conceptual」から「concept-article」に変更され、その日付が「02/22/2024」から「09/19/2024」に更新されています。また、クエリ構文に関する説明部分で、範囲検索を表すテキストの強調に関する形式が改善されています。この修正は、情報の明確さと正確さを高めるために重要です。
全体として、この更新は文書の内容を最新の状況に保ち、ユーザーに対してより良い理解を促進するためのものです。
articles/search/samples-python.md
Diff
@@ -12,7 +12,7 @@ ms.custom:
- devx-track-python
- ignite-2023
ms.topic: conceptual
-ms.date: 08/16/2024
+ms.date: 09/19/2024
---
# Python samples for Azure AI Search
@@ -28,46 +28,26 @@ Learn about the Python code samples that demonstrate the functionality and workf
## SDK samples
-Code samples from the Azure SDK development team demonstrate API usage. You can find these samples in [**azure-sdk-for-python/tree/main/sdk/search/azure-search-documents/samples**](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/search/azure-search-documents/samples) on GitHub.
-
-| Samples | Description |
-|---------|-------------|
-| [Authenticate](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_authentication.py) | Demonstrates how to configure a client and authenticate to the service. |
-| [Index Create-Read-Update-Delete operations](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_index_crud_operations.py) | Demonstrates how to create, update, get, list, and delete [search indexes](search-what-is-an-index.md). |
-| [Indexer Create-Read-Update-Delete operations](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_indexers_operations.py) | Demonstrates how to create, update, get, list, reset, and delete [indexers](search-indexer-overview.md). |
-| [Search indexer data sources](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_indexer_datasource_skillset.py) | Demonstrates how to create, update, get, list, and delete indexer data sources, required for indexer-based indexing of [supported Azure data sources](search-indexer-overview.md#supported-data-sources). |
-| [Synonyms](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_synonym_map_operations.py) | Demonstrates how to create, update, get, list, and delete [synonym maps](search-synonyms.md). |
-| [Load documents](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_crud_operations.py) | Demonstrates how to upload or merge documents into an index in a [data import](search-what-is-data-import.md) operation. |
-| [Simple query](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_simple_query.py) | Demonstrates how to set up a [basic query](search-query-overview.md). |
-| [Filter query](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_filter_query.py) | Demonstrates setting up a [filter expression](search-filters.md). |
-| [Facet query](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_facet_query.py) | Demonstrates working with [facets](search-faceted-navigation.md). |
-| [Semantic ranking sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_semantic_search.py) | Shows you how to configure semantic ranking in an index and invoke semantic queries. |
-| [Vector search](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/search/azure-search-documents/samples/sample_vector_search.py) | Demonstrates how to get embeddings from a description field and then send vector queries against the data. |
+[**azure-sdk-for-python/tree/main/sdk/search/azure-search-documents/samples**](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/search/azure-search-documents/samples) on GitHub provides code samples from the Azure SDK development team, demonstrating API usage.
## Doc samples
Code samples from the Azure AI Search team demonstrate features and workflows. Many of these samples are referenced in tutorials, quickstarts, and how-to articles. You can find these samples in [**Azure-Samples/azure-search-python-samples**](https://github.com/Azure-Samples/azure-search-python-samples) on GitHub.
| Samples | Article |
|---------|---------|
-| [quickstart](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Quickstart) | Source code for the Python portion of [Quickstart: Full text search using the Azure SDKs](search-get-started-text.md). This article covers the basic workflow for creating, loading, and querying a search index using sample data. |
-| [quickstart-semantic-search](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Quickstart-Semantic-Search) | Source code for the Python portion of [Quickstart: Semantic ranking using the Azure SDKs](search-get-started-semantic.md). It shows the index schema and query request for invoking semantic ranking. |
+| [Tutorial-RAG](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Tutorial-RAG) | Source code for the Python portion of [How to build a RAG solution using Azure AI Search](tutorial-rag-build-solution.md).|
+| [Quickstart](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Quickstart) | Source code for the Python portion of [Quickstart: Full text search using the Azure SDKs](search-get-started-text.md). This article covers the basic workflow for creating, loading, and querying a search index using sample data. |
+| [Quickstart-RAG](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Quickstart-RAG) | Source code for the Python portion of [Quickstart: Generative search (RAG) with grounding data from Azure AI Search](search-get-started-rag.md). |
+| [Quickstart-Semantic-Search](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Quickstart-Semantic-Search) | Source code for the Python portion of [Quickstart: Semantic ranking using the Azure SDKs](search-get-started-semantic.md). It shows the index schema and query request for invoking semantic ranking. |
| [bulk-insert](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/bulk-insert) | Source code for the Python example of how to [use the push APIs](search-how-to-load-search-index.md) to upload and index documents. |
-| [azure-functions](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/azure-function-search) | Source code for the Python example of an Azure function that sends queries to a search service. You can substitute this Python version of the `api` code used in the [Add search to web sites](tutorial-csharp-overview.md) C# sample. |
+| [azure-function-search](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/azure-function-search) | Source code for the Python example of an Azure function that sends queries to a search service. You can substitute this Python version of the `api` code used in the [Add search to web sites](tutorial-csharp-overview.md) C# sample. |
## Demos
-A demo repo provides proof-of-concept source code for examples or scenarios shown in demonstrations. Demo solutions aren't designed for adaptation by customers.
+[**azure-search-vector-samples**](https://github.com/Azure/azure-search-vector-samples/blob/main/README.md) on GitHub provides a comprehensive collection of samples for vector search scenarios, organized by scenario or technology.
-| Repository | Description |
-|------------|-------------|
-| [azure-search-vector-python-sample.ipynb](https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/basic-vector-workflow/azure-search-vector-python-sample.ipynb) | Uses the **azure.search.documents** library in the Azure SDK for Python to create, load, and query a vector index. |
-| [azure-search-integrated-vectorization-sample.ipynb](https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/integrated-vectorization/azure-search-integrated-vectorization-sample.ipynb) | Extends the vector indexing workflow to include integrated data chunking and embedding. |
-| [azure-search-custom-vectorization-sample.ipynb](https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/custom-vectorizer/azure-search-custom-vectorization-sample.ipynb) | Demonstrates custom vectorization. |
-| [azure-search-vector-python-huggingface-model-sample.ipynb](https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/community-integration/hugging-face/azure-search-vector-python-huggingface-model-sample.ipynb) | Hugging Face integration. |
-| [azure-search-vector-python-langchain-sample.ipynb](https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/community-integration/langchain/azure-search-vector-python-langchain-sample.ipynb) | LangChain integration. |
-| [azure-search-vector-python-llamaindex-sample.ipynb](https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/community-integration/llamaindex/azure-search-vector-python-llamaindex-sample.ipynb) | Llamaindex integration. |
-| [azure-search-openai-demo](https://github.com/Azure-Samples/azure-search-openai-demo/blob/main/README.md) | ChatGPT + Enterprise data with Azure OpenAI Python code showing how to use Azure AI Search with the large language models in Azure OpenAI. For background, see this Tech Community blog post: [Revolutionize your Enterprise Data with ChatGPT](https://techcommunity.microsoft.com/t5/ai-applied-ai-blog/revolutionize-your-enterprise-data-with-chatgpt-next-gen-apps-w/ba-p/3762087). |
+We also recommend [**azure-search-openai-demo**](https://github.com/Azure-Samples/azure-search-openai-demo/blob/main/README.md). This is a ChatGPT-like experience over enterprise data with Azure OpenAI Python code showing how to use Azure AI Search with the large language models in Azure OpenAI. For background, see this Tech Community blog post: [Revolutionize your Enterprise Data with ChatGPT](https://techcommunity.microsoft.com/t5/ai-applied-ai-blog/revolutionize-your-enterprise-data-with-chatgpt-next-gen-apps-w/ba-p/3762087). |
## Other samples
Summary
{
"modification_type": "minor update",
"modification_title": "Pythonサンプルに関する文書の更新"
}
Explanation
この変更は、Azure AI Searchに関連する「samples-python.md」ファイルに対するもので、主に内容の整理と更新が行われています。具体的には、29行の削除と9行の追加があり、全体で38行の変更が発生しています。
変更点には、文書の日付が「08/16/2024」から「09/19/2024」に更新されたことを含み、Python SDKに関するコードサンプルのタブ構造が改良されています。また、SDKやドキュメントサンプルのリストが更新され、新しいサンプルや説明が加えられています。特に、RAG(Retrieval-Augmented Generation)に関連する新しいチュートリアルが追加され、ユーザーが利用可能なリソースが広がりました。
全体として、この更新は文書の整合性を保ち、利用者が最新の関連情報やコードサンプルを簡単に見つけられるようにすることを目的としています。ユーザーがAzure AI Searchをより効果的に活用できるように導くための重要な改良と言えます。
articles/search/search-create-service-portal.md
Diff
@@ -11,7 +11,7 @@ ms.custom:
- references_regions
- build-2024
ms.topic: conceptual
-ms.date: 08/22/2024
+ms.date: 09/19/2024
---
# Create an Azure AI Search service in the portal
@@ -87,25 +87,25 @@ Service name requirements:
## Choose a region
> [!IMPORTANT]
-> Due to high demand, Azure AI Search is currently unavailable for new instances in West Europe. If you don't immediately need semantic ranker or skillsets, choose Sweden Central because it has the most data center capacity. Otherwise, North Europe is another option. Currently, there are also capacity constraints for Basic and Standard (S1) tiers within a given region.
+> Due to high demand, Azure AI Search is currently unavailable for new instances in some regions.
If you use multiple Azure services, putting all of them in the same region minimizes or voids bandwidth charges. There are no charges for data egress among same-region services.
Generally, choose a region near you, unless the following considerations apply:
-+ Your nearest region is capacity constrained. West Europe is at capacity and unavailable for new instances. Other regions are [at capacity for specific tiers](search-sku-tier.md#region-availability-by-tier). One advantage to using the Azure portal for resource setup is that it provides only those regions and tiers that are available. You can't select regions or tiers that are unavailable.
++ Your nearest region is capacity constrained. For example, West Europe is at capacity and unavailable for new instances. Other regions are [at capacity for specific tiers](search-sku-tier.md#region-availability-by-tier). One advantage to using the Azure portal for resource setup is that it provides only those regions and tiers that are available.
+ You want to use integrated data chunking and vectorization or built-in skills for AI enrichment. Azure OpenAI and Azure AI services multiservice accounts must be in the same region as Azure AI Search for integration purposes. [Choose a region](search-region-support.md) that provides all necessary resources.
+ You want to use Azure Storage for indexer-based indexing or you need to store application data that isn't in an index. Debug session state, enrichment caches, and knowledge stores are Azure AI Search features that have a dependency on Azure Storage. The region you choose for Azure Storage has implications for network security. Specifically, if you're setting up a firewall, you should place the resources in separate regions. For more information, see [Outbound connections from Azure AI Search to Azure Storage](search-indexer-securing-resources.md).
Here's a checklist for choosing a region:
-1. Is Azure AI Search available in a nearby region? Check the [supported regions list](search-region-support.md). Capacity-constrained regions are indicated in the footnotes.
+1. Is Azure AI Search available in a nearby region? Check the [supported regions list](search-region-support.md).
1. Do you know which tier you want to use? Tiers are covered in the next step. Check [region availability by tier](search-sku-tier.md#region-availability-by-tier) to determine if you can create a search service at the desired tier in your region of choice.
-1. Do you need [AI enrichment](cognitive-search-concept-intro.md) or [integrated data chunking and vectorization](vector-search-integrated-vectorization.md)? Verify that Azure OpenAI and Azure AI services are [offered in the same region](search-region-support.md) as Azure AI Search.
+1. Do you need [AI enrichment](cognitive-search-concept-intro.md) or [integrated data chunking and vectorization](vector-search-integrated-vectorization.md)? Verify that Azure OpenAI and Azure AI multiservice are [offered in the same region](search-region-support.md) as Azure AI Search.
Be aware that Azure AI Vision multimodal embeddings API, used for [integrated image vectorization](search-get-started-portal-image-search.md), must be accessed through an Azure AI multiservice account, but is available in a [smaller subset of regions](/azure/ai-services/computer-vision/overview-image-analysis#region-availability).
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Searchサービスポータルの作成に関する文書の更新"
}
Explanation
この変更は、Azure AI Searchサービスをポータルで作成する方法を説明した「search-create-service-portal.md」ファイルに関するもので、内容の更新と整理が行われています。具体的には、5行の追加と5行の削除があり、合計で10行の変更が加えられました。
主な変更点としては、文書の日付が「08/22/2024」から「09/19/2024」に更新されたことが挙げられます。また、特定の地域での新しいインスタンスの可用性に関する注意事項が調整され、West Europe地域が新しいインスタンスに対して利用できない旨の情報が簡潔に記載されています。さらに、Azureストレージとの統合や、AI機能の利用に関する項目が追加され、地域選択の際の考慮点が強調されています。
全体として、これらの変更は文書の明確さとユーザーに対する情報の正確性を高めることを目的としており、Azure AI Searchのサービスを効果的に利用するためのガイダンスが強化されています。
articles/search/search-filters.md
Diff
@@ -7,18 +7,20 @@ manager: nitinme
author: HeidiSteen
ms.author: heidist
ms.service: cognitive-search
-ms.topic: conceptual
-ms.date: 02/22/2024
+ms.topic: concept-article
+ms.date: 09/19/2024
ms.custom:
- devx-track-csharp
- ignite-2023
---
-# Filters in text queries
+# Filters in keyword search
-A *filter* provides value-based criteria for including or excluding content before query execution. For example, including or excluding documents based on dates, locations, or language. Filters are specified on individual fields. A field definition must be attributed as "filterable" if you want to use it in filter expressions.
+A *filter* provides value-based criteria for including or excluding content before query execution for keyword search, or before or after query execution for vector search. Filters are applied to nonvector fields, but can be used in vector search if documents include nonvector fields. For example, for indexes organized around chunked content, you might have parent-level fields or metadata fields that can be filtered.
-A filter is specified using [OData filter expression syntax](search-query-odata-filter.md). In contrast with full text search, a filter succeeds only if the match is exact.
+This article explains filtering for keyword search. For more information about vectors, see [Add a filter in a vector query](vector-search-filters.md).
+
+A filter is specified using [OData filter expression syntax](search-query-odata-filter.md). In contrast with keyword and vector search, a filter succeeds only if the match is exact.
## When to use a filter
@@ -42,7 +44,9 @@ At query time, a filter parser accepts criteria as input, converts the expressio
Filtering occurs in tandem with search, qualifying which documents to include in downstream processing for document retrieval and relevance scoring. When paired with a search string, the filter effectively reduces the recall set of the subsequent search operation. When used alone (for example, when the query string is empty where `search=*`), the filter criteria is the sole input.
-## Defining filters
+## How filters are defined
+
+Filters apply to alphanumeric content on fields that are attributed as `filterable`.
Filters are OData expressions, articulated in the [filter syntax](search-query-odata-filter.md) supported by Azure AI Search.
@@ -112,7 +116,7 @@ The following examples illustrate several usage patterns for filter scenarios. F
In the REST API, filterable is *on* by default for simple fields. Filterable fields increase index size; be sure to set `"filterable": false` for fields that you don't plan to actually use in a filter. For more information about settings for field definitions, see [Create Index](/rest/api/searchservice/indexes/create).
-In the .NET SDK, the filterable is *off* by default. You can make a field filterable by setting the [IsFilterable property](/dotnet/api/azure.search.documents.indexes.models.searchfield.isfilterable) of the corresponding [SearchField](/dotnet/api/azure.search.documents.indexes.models.searchfield) object to `true`. In the next example, the attribute is set on the `Rating` property of a model class that maps to the index definition.
+In the Azure SDKs, filterable is *off* by default. You can make a field filterable by setting the [IsFilterable property](/dotnet/api/azure.search.documents.indexes.models.searchfield.isfilterable) of the corresponding [SearchField](/dotnet/api/azure.search.documents.indexes.models.searchfield) object to `true`. In the next example, the attribute is set on the `Rating` property of a model class that maps to the index definition.
```csharp
[SearchField(IsFilterable = true, IsSortable = true, IsFacetable = true)]
Summary
{
"modification_type": "minor update",
"modification_title": "検索フィルターに関する文書の更新"
}
Explanation
この変更は、検索フィルターに関する「search-filters.md」ファイルの更新に関連しています。ファイルからは、11行の追加、7行の削除が行われ、合計で18行の変更が加わっています。
主な変更点は、フィルターに関する説明が充実されており、キーワード検索とベクトル検索におけるフィルターの適用方法に関する詳細が追加されたことです。「フィルターは、クエリ実行前にコンテンツを含めるか除外するための値ベースの基準を提供します」との説明が改訂され、ベクトル検索でもフィルターが使えることが明確にされました。また、記事のタイトルが「テキストクエリのフィルター」から「キーワード検索のフィルター」に変更され、フィルターの適用範囲がより明確に示されています。
さらに、フィルターの定義方法に関する説明が「フィルターの定義方法」に変更され、フィルターが適用可能なフィールドの条件が強調されています。これにより、ユーザーはフィルターを効果的に設定し、Azure AI Searchでの検索精度を向上させるための具体的な指針が提供されています。
全体として、この更新は文書の内容をより明確にし、利用者が効果的に検索フィルターについて理解できるようにすることを目的としています。
articles/search/search-limits-quotas-capacity.md
Diff
@@ -8,7 +8,7 @@ author: HeidiSteen
ms.author: heidist
ms.service: cognitive-search
ms.topic: conceptual
-ms.date: 09/04/2024
+ms.date: 09/19/2024
ms.custom:
- references_regions
- build-2024
@@ -78,55 +78,36 @@ When estimating document size, remember to consider only those fields that add v
## Vector index size limits
-When you index documents with vector fields, Azure AI Search constructs internal vector indexes using the algorithm parameters you provide. The size of these vector indexes is restricted by the memory reserved for vector search for your service's tier (or `SKU`).
+When you index documents with vector fields, Azure AI Search constructs internal vector indexes using the algorithm parameters you provide. The size of these vector indexes is restricted by the memory reserved for vector search for your service's tier (or `SKU`). For guidance on managing and maximizing vector storage, see [Vector index size and staying under limits](vector-search-index-size.md).
-The service enforces a vector index size quota **for every partition** in your search service. Each extra partition increases the available vector index size quota. This quota is a hard limit to ensure your service remains healthy, which means that further indexing attempts once the limit is exceeded results in failure. You can resume indexing once you free up available quota by either deleting some vector documents or by scaling up in partitions.
+Vector limits vary by:
-Vector limits vary by service creation date and tier.
++ [service creation date](vector-search-index-size.md#how-to-check-service-creation-date)
++ [region](search-region-support.md)
-+ To check the age of your search service or learn more about vector indexes, see [Vector index size and staying under limits](vector-search-index-size.md).
-
-+ To view the vector quota in effect for your search service, use [GET Service Statistics](/rest/api/searchservice/get-service-statistics/get-service-statistics), or check the **Properties** and **Usage** tabs for your search service in the Azure portal.
-
-#### Vector quota per partition (GB)
+Higher vector limits from April 2024 onwards exist on *new search services* in regions providing the extra capacity, which is most of them.
This table shows the progression of vector quota increases in GB over time. The quota is per partition, so if you scale a new Standard (S1) service to 6 partitions, total vector quota is 35 multiplied by 6.
| Service creation date |Basic | S1| S2 | S3/HD | L1 | L2 |
|-----------------------|------|---|----|----|----|----|
|**Before July 1, 2023** <sup>1</sup> | 0.5 | 1 | 6 | 12 | 12 | 36 |
| **July 1, 2023 through April 3, 2024** <sup>2</sup>| 1 | 3 | 12 | 36 | 12 | 36 |
-|**April 3, 2024 through May 17, 2024** <sup>3</sup> | 5 | 35 | 100 | 200 | 12 | 36 |
-|**After May 17, 2024** <sup>4</sup> | 5 | 35 | 150 | 300 | 150 | 300 |
+|**April 3, 2024 through May 17, 2024** <sup>3</sup> | **5** | **35** | **150** | **300** | 12 | 36 |
+|**After May 17, 2024** <sup>4</sup> | 5 | 35 | 150 | 300 | **150** | **300** |
<sup>1</sup> Initial vector limits during early preview.
<sup>2</sup> Vector limits during the later preview period. Three regions didn't have the higher limits: Germany West Central, West India, Qatar Central.
-<sup>3</sup> Higher vector quota based on the larger partitions for supported tiers and regions.
+<sup>3</sup> Higher vector quota based on the larger partitions for supported tiers and regions.
<sup>4</sup> Higher vector quota for more tiers and regions based on partition size updates.
-#### Partition limits (GB)
-
-This table repeats [partition storage limits](#service-limits) for context. The table shows the progression of storage quota increases in GB over time. Vector quota is per partition, so the more significant increases in vector quota that occurred starting in April 2024 correspond to the increases in per-partition storage occuring at the same time.
-
-Higher capacity partitions were brought online starting in April 2024.
-
-| Service creation date |Basic | S1| S2 | S3/HD | L1 | L2 |
-|-----------------------|------|---|----|----|----|----|
-|**Before July 1, 2023** <sup>1</sup> | 2 | 25 | 100 | 200 | 1,024 | 2,048 |
-|**July 1, 2023 through April 3, 2024** <sup>2</sup>| 2 | 25 | 100 | 200 | 1,024 | 2,048 |
-|**April 3, 2024 through May 17, 2024** <sup>3</sup> | 15 | 160 | 512 | 1,024 | 1,024 | 2,048 |
-|**After May 17, 2024** <sup>4</sup> | 15 | 160 | 512 | 1,024 | 2,048 | 4,096 |
-
-<sup>1</sup> Partition sizes during early preview.
-
-<sup>2</sup> No change during the later preview period.
-
-<sup>3</sup> Higher capacity storage for Basic, S1, S2, S3 in these regions. **Americas**: Brazil South, Canada Central, Canada East, East US, East US 2, Central US, North Central US, South Central US, West US, West US 2, West US 3, West Central US. **Europe**: France Central. Italy North, North Europe, Norway East, Poland Central, Switzerland North, Sweden Central, UK South, UK West. **Middle East**: UAE North. **Africa**: South Africa North. **Asia Pacific**: Australia East, Australia Southeast, Central India, Jio India West, East Asia, Southeast Asia, Japan East, Japan West, Korea Central, Korea South.
+The service enforces a vector index size quota *for every partition* in your search service. Each extra partition increases the available vector index size quota. This quota is a hard limit to ensure your service remains healthy, which means that further indexing attempts once the limit is exceeded results in failure. You can resume indexing once you free up available quota by either deleting some vector documents or by scaling up in partitions.
-<sup>4</sup> Higher capacity storage for more tiers and more regions. **Europe**: Germany North, Germany West Central, Switzerland West. **Azure Government**: Texas, Arizona, Virginia. **Africa**: South Africa North. **Asia Pacific**: China North 3, China East 3.
+> [!IMPORTANT]
+> Higher vector limits are tied to larger partition sizes. Regions that run on older infrastructure are subject to the July-April limits. Review the [regions list](search-region-support.md) for status on partition storage limits.
## Indexer limits
Summary
{
"modification_type": "minor update",
"modification_title": "検索制限、クォータ、容量に関する文書の更新"
}
Explanation
この変更は、検索制限、クォータ、容量に関する「search-limits-quotas-capacity.md」ファイルの更新です。主に12行の追加と31行の削除によって、合計43行の変更が行われています。
主な変更内容には、文書の日付が「09/04/2024」から「09/19/2024」に更新され、より明確な情報を提供するために説明が整理されています。特に、ベクトルインデックスのサイズ制限に関する情報が強化され、ベクトルストレージを管理し最大限に活用するためのガイダンスが追加されました。たとえば、ベクトルインデックスのサイズ制限がサービスの tier(SKU)に基づいていることや、ベクトルのクォータが新しい検索サービスの作成日や地域によって異なることが明記されました。
また、フィルターやインデックスの制限に関する情報も整理され、特に重要な事項として、より大きなパーティションサイズに tiedしたベクトル制限が強調されています。これにより、古いインフラが稼働している地域では特定の制限が適用されることに注意が促されています。
全体として、この更新は、ユーザーがAzure AI Searchの制限やクォータについての理解を深め、適切にリソースを管理できるようにすることを目的としています。
articles/search/search-region-support.md
Diff
@@ -1,5 +1,5 @@
---
-title: Feature availability across clouds regions
+title: Supported regions
titleSuffix: Azure AI Search
description: Shows supported regions and feature availability across regions for Azure AI Search.
@@ -9,13 +9,13 @@ ms.author: heidist
ms.service: cognitive-search
ms.topic: conceptual
ms.custom: references_regions
-ms.date: 09/03/2024
+ms.date: 09/19/2024
---
-# Azure AI Search feature availability across cloud regions
+# Azure AI Search regions list
-This article identifies the cloud regions in which Azure AI Search is available. It also lists which premium features are available in each region.
+This article identifies the cloud regions in which Azure AI Search is available. It also lists which premium features are available in each region.
## Features subject to regional availability
@@ -57,37 +57,39 @@ You can create an Azure AI Search resource in any of the following Azure public
| Canada East | | ✅ | |
| East US | ✅ | ✅ | ✅ |
| East US 2 | ✅ | ✅ | ✅ |
-| Central US <sup>1</sup> | ✅ | ✅ | ✅ |
+| Central US <sup>1</sup> | ✅ | ✅ | ✅ |
| North Central US | ✅ | ✅ | |
-| South Central US <sup>1</sup> | ✅ | ✅ | ✅ |
+| South Central US <sup>2</sup> | ✅ | ✅ | ✅ |
| West US | ✅ | ✅ | |
-| West US 2 <sup>1</sup> | ✅ | ✅ | ✅ |
-| West US 3 <sup>1</sup> | ✅ | ✅ |✅ |
+| West US 2 | ✅ | ✅ | ✅ |
+| West US 3 <sup>2</sup> | ✅ | ✅ |✅ |
| West Central US | ✅ | ✅ | |
-<sup>1</sup> Currently, this region is at capacity for Basic and Standard (S1) tiers. Choose a higher tier or a different region.
+<sup>1</sup> This region has capacity, but some tiers are [not available](search-sku-tier.md#region-availability-by-tier).
+
+<sup>2</sup> Currently, this region is at full capacity and not accepting new search services.
### Europe
| Region | AI integration | Semantic ranking | Availability zones |
|--|--|--|--|
-| North Europe <sup>1</sup>| ✅ | ✅ | ✅ |
-| West Europe <sup>2</sup>| ✅ | ✅ | ✅ |
+| North Europe | ✅ | ✅ | ✅ |
+| West Europe <sup>1, 2</sup>| ✅ | ✅ | ✅ |
| France Central | ✅ | ✅ | ✅ |
| Germany West Central | ✅ | | ✅ |
| Italy North | | | ✅ |
| Norway East | ✅ | | ✅ |
| Poland Central | | | |
-| Spain Central | | | ✅ |
+| Spain Central <sup>2</sup> | | | ✅ |
| Sweden Central | ✅ | | ✅ |
| Switzerland North | ✅ | ✅ | ✅ |
| Switzerland West | ✅ | ✅ | ✅ |
| UK South | ✅ | ✅ | ✅ |
| UK West | | ✅ | |
-<sup>1</sup> Currently, this region is at capacity for Basic and Standard (S1) tiers. Choose a higher tier or a different region.
+<sup>1</sup> Currently, this region is at full capacity and not accepting new search services.
-<sup>2</sup> West Europe is at capacity for all tiers and isn't accepting any new search services. Additionally, the clusters used to run Azure AI Search don't have the [higher capacity partitions](search-limits-quotas-capacity.md#service-limits) that were brought online in April 2024. This means that search services deployed in this region have lower storage and computing capability.
+<sup>2</sup> This region runs on older infrastructure that has lower storage limits per partition at every tier. Choose a different region if you want [higher limits](search-limits-quotas-capacity.md#service-limits).
### Middle East
@@ -97,9 +99,9 @@ You can create an Azure AI Search resource in any of the following Azure public
| Qatar Central <sup>1, 2</sup> | | | ✅ |
| UAE North | ✅ | | ✅ |
-<sup>1</sup> Currently, this region is at capacity for Basic and Standard (S1) tiers. Choose a higher tier or a different region.
+<sup>1</sup> Currently, this region is at full capacity and not accepting new search services.
-<sup>2</sup> These regions run on older infrastructure that has lower capacity per partition at every tier. Choose a different region if you want [higher capacity](search-limits-quotas-capacity.md#service-limits).
+<sup>2</sup> This region runs on older infrastructure that has lower storage limits per partition at every tier. Choose a different region if you want [higher limits](search-limits-quotas-capacity.md#service-limits).
### Africa
@@ -123,51 +125,37 @@ You can create an Azure AI Search resource in any of the following Azure public
| Korea Central | ✅ | ✅ | ✅ |
| Korea South | | ✅ | |
-<sup>1</sup> Currently, this region is at capacity for Basic and Standard (S1) tiers. Choose a higher tier or a different region.
+<sup>1</sup> This region has capacity, but some tiers are [not available](search-sku-tier.md#region-availability-by-tier).
-<sup>2</sup> These regions run on older infrastructure that has lower capacity per partition at every tier. Choose a different region if you want [higher capacity](search-limits-quotas-capacity.md#service-limits).
+<sup>2</sup> This region runs on older infrastructure that has lower storage limits per partition at every tier. Choose a different region if you want [higher limits](search-limits-quotas-capacity.md#service-limits).
## Azure Government regions
-All of these regions support [higher capacity tiers](search-limits-quotas-capacity.md#service-limits).
-
-None of these regions support Azure [role-based access for data plane operations](search-security-rbac.md). You must use key-based authentication for indexing and query workloads.
-
| Region | AI integration | Semantic ranking | Availability zones |
|--|--|--|--|
| Arizona | ✅ | ✅ | |
| Texas | | | |
-| Virginia | ✅ | ✅ | ✅ |
+| Virginia <sup>1</sup> | ✅ | ✅ | ✅ |
-## Azure operated by 21Vianet
+<sup>1</sup> Currently, this region is at full capacity and not accepting new search services.
-You can install Azure AI Search in any of the following regions. If you need semantic ranking or AI enrichment, choose a region that provides the feature.
+## Azure operated by 21Vianet
| Region | AI integration | Semantic ranking | Availability zones |
|--|--|--|--|
-| China East <sup>1</sup> | | | |
+| China East | | | |
| China East 2 <sup>1</sup> | ✅ | | |
| China East 3 | | | |
-| China North <sup>1</sup> | | | |
+| China North | | | |
| China North 2 <sup>1</sup> | | | |
| China North 3 | | ✅ | ✅ |
-<sup>1</sup> These regions run on older infrastructure that has lower capacity per partition at every tier. Choose a different region if you want [higher capacity](search-limits-quotas-capacity.md#service-limits).
-
-<!-- ## Early Update Access Program (EUAP)
-
-These regions
-
-| Region | AI enrichment | Semantic ranking | Availability zones |
-|--|--|--|--|
-| Central US EUAP <sup>1</sup> | | ✅ | |
-| East US 2 EUAP | | ✅ | |
-
-<sup>1</sup> This region runs on older infrastructure that has lower capacity per partition at every tier. You can't create a search service with [higher capacity](search-limits-quotas-capacity.md#service-limits) in this region. -->
+<sup>1</sup> This region runs on older infrastructure that has lower storage limits per partition at every tier. Choose a different region if you want [higher limits](search-limits-quotas-capacity.md#service-limits).
## See also
- [Azure AI Studio region availability](/azure/ai-studio/reference/region-support)
- [Azure OpenAI model region availability](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability)
+- [Azure AI Vision region list](/azure/ai-services/computer-vision/overview-image-analysis#region-availability)
- [Availability zone region availability](/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support)
- [Azure product by region page](https://azure.microsoft.com/explore/global-infrastructure/products-by-region/?products=search)
\ No newline at end of file
Summary
{
"modification_type": "minor update",
"modification_title": "検索地域サポートに関する文書の更新"
}
Explanation
この変更は、検索地域サポートに関する「search-region-support.md」ファイルの更新です。27行の追加と39行の削除が行われ、合計66行の変更が含まれています。
主な変更点としては、文書のタイトルが「Feature availability across clouds regions」から「Supported regions」に変更され、内容がより具体的に示されています。また、文書の日付が「09/03/2024」から「09/19/2024」に更新されています。さらに、Azure AI Searchが利用可能なクラウド地域や各地域でのプレミアム機能の可用性に関する情報が整理されています。
特定の地域に関する詳細な情報が追加され、各地域がフルキャパシティで新しい検索サービスを受け入れていない状況についても明示されています。また、特に古いインフラが稼働している地域では、ストレージ制限が低いため、高いキャパシティが必要な場合は別の地域を選択するように促されています。
これにより、ユーザーはAzure AI Searchの利用可能な地域と、それに伴う制限や機能に関する最新の情報を得ることができるようになり、最適な地域を選択するための判断材料が提供されています。
articles/search/search-sku-tier.md
Diff
@@ -8,7 +8,7 @@ author: HeidiSteen
ms.author: heidist
ms.service: cognitive-search
ms.topic: conceptual
-ms.date: 08/22/2024
+ms.date: 09/19/2024
---
@@ -53,7 +53,9 @@ You can find out more about the various tiers on the [pricing page](https://azur
## Region availability by tier
-Currently, several regions are at capacity for Basic and Standard (S1) tiers and can't be used for new search services. If you use the Azure portal to create a search service, the portal excludes any region-tier combinations that aren't available.
+The supported [regions list](search-region-support.md) provides the locations where Azure AI Search is offered.
+
+Currently, several regions are at capacity for specific tiers and can't be used for new search services. If you use the Azure portal to create a search service, the portal excludes any region-tier combinations that aren't available.
| Region | Disabled tier (SKU) due to over-capacity |
|--------|------------------------------------------|
@@ -93,7 +95,7 @@ Tiers determine the maximum storage of the service itself, plus the maximum num
Tier pricing includes details about per-partition storage that ranges from 15 GB for Basic, up to 2 TB for Storage Optimized (L2) tiers. Other hardware characteristics, such as speed of operations, latency, and transfer rates, aren't published, but tiers that are designed for specific solution architectures are built on hardware that has the features to support those scenarios. For more information about partitions, see [Estimate and manage capacity](search-capacity-planning.md) and [Reliability in Azure AI Search](search-reliability.md).
> [!NOTE]
-> Higher capacity partitions became available in selected regions starting in April 2024. A second wave of higher capacity partitions released in May 2024. If you're using an older search service, consider creating a new search service to benefit from more capacity at the same billing rate. For more information, see [Service limits](search-limits-quotas-capacity.md#service-limits)
+> Higher capacity partitions became available in selected regions starting in April 2024. A second wave of higher capacity partitions released in May 2024. If you're using an older search service, consider creating a new search service to benefit from more capacity at the same billing rate. For more information, see [Service limits](search-limits-quotas-capacity.md#service-limits). To check the age of your search service, see [How to check service creation date](vector-search-index-size.md#how-to-check-service-creation-date).
## Billing rates
Summary
{
"modification_type": "minor update",
"modification_title": "SKUティアに関する文書の更新"
}
Explanation
この変更は、SKUティアに関する「search-sku-tier.md」ファイルの更新です。5行が追加され、3行が削除され、合計で8行の変更が行われています。
主な変更点として、文書の日付が「08/22/2024」から「09/19/2024」に更新されています。また、「地域の可用性」に関するセクションに新しい文が追加され、Azure AI Searchが提供される場所を示す「サポートされている地域リスト」が参照されています。
加えて、「現在、特定のティアが容量に達している地域がいくつかあり、新しい検索サービスに使用できない」という情報が明確化され、Azureポータルを使用して検索サービスを作成する際には、利用できない地域とティアの組み合わせが除外されることが強調されています。
また、パーティションに関する注意事項も追加されており、検索サービスの作成日を確認する方法へのリンクが提供されています。これにより、ユーザーは自分の検索サービスが最新のキャパシティを享受できるかどうかを確認しやすくなっています。この更新により、Azure AI Searchの使用状況に関する最新情報が反映されています。
articles/search/search-what-is-data-import.md
Diff
@@ -9,17 +9,18 @@ ms.author: heidist
ms.service: cognitive-search
ms.custom:
- ignite-2023
-ms.topic: conceptual
-ms.date: 01/17/2024
+ms.topic: concept-article
+ms.date: 09/17/2024
---
+
# Data import in Azure AI Search
In Azure AI Search, queries execute over user-owned content that's loaded into a [search index](search-what-is-an-index.md). This article describes the two basic workflows for populating an index: *push* your data into the index programmatically, or *pull* in the data using a [search indexer](search-indexer-overview.md).
Both approaches load documents from an external data source. Although you can create an empty index, it's not queryable until you add the content.
> [!NOTE]
-> If [AI enrichment](cognitive-search-concept-intro.md) is a solution requirement, you must use the pull model (indexers) to load an index. Skillsets are attached to an indexer and don't run independently.
+> If [AI enrichment](cognitive-search-concept-intro.md) or [integrated vectorization](vector-search-integrated-vectorization.md) are solution requirements, you must use the pull model (indexers) to load an index. Skillsets are attached to indexers and don't run independently.
## Pushing data to an index
@@ -77,7 +78,8 @@ The pull model uses *indexers* connecting to a supported data source, automatica
+ [Azure Files (preview)](search-file-storage-integration.md)
+ [Azure Cosmos DB](search-howto-index-cosmosdb.md)
+ [Azure SQL Database, SQL Managed Instance, and SQL Server on Azure VMs](search-howto-connecting-azure-sql-database-to-azure-search-using-indexers.md)
-+ [SharePoint in Microsoft 365 (preview)](search-howto-index-sharepoint-online.md)
++ [OneLake files and shortcuts](search-how-to-index-onelake-files.md)
++ [SharePoint Online (preview)](search-howto-index-sharepoint-online.md)
You can use third-party connectors, developed and maintained by Microsoft partners. For more information and links, see [Data source gallery](search-data-sources-gallery.md).
@@ -87,7 +89,7 @@ Indexers connect an index to a data source (usually a table, view, or equivalent
Use the following tools and APIs for indexer-based indexing:
-+ [Import data wizard in the Azure portal](search-import-data-portal.md)
++ [Import data wizard or Import and vectorize data wizard](search-import-data-portal.md)
+ REST APIs: [Create Indexer (REST)](/rest/api/searchservice/indexers/create), [Create Data Source (REST)](/rest/api/searchservice/data-sources/create), [Create Index (REST)](/rest/api/searchservice/indexes/create)
+ Azure SDK for .NET: [SearchIndexer](/dotnet/api/azure.search.documents.indexes.models.searchindexer), [SearchIndexerDataSourceConnection](/dotnet/api/azure.search.documents.indexes.models.searchindexerdatasourceconnection), [SearchIndex](/dotnet/api/azure.search.documents.indexes.models.searchindex),
+ Azure SDK for Python: [SearchIndexer](/python/api/azure-search-documents/azure.search.documents.indexes.models.searchindexer), [SearchIndexerDataSourceConnection](/python/api/azure-search-documents/azure.search.documents.indexes.models.searchindexerdatasourceconnection), [SearchIndex](/python/api/azure-search-documents/azure.search.documents.indexes.models.searchindex),
Summary
{
"modification_type": "minor update",
"modification_title": "データインポートに関する文書の更新"
}
Explanation
この変更は、「search-what-is-data-import.md」ファイルの更新に関するもので、7行が追加され、5行が削除され、合計で12行の変更が行われています。
主な変更点の一つは、文書の日付が「01/17/2024」から「09/17/2024」に更新されたことです。また、文書のトピックが「conceptual」から「concept-article」に変更されました。この変更は、文書の内容をより明確に示すためのものです。
さらには、AIエンリッチメントや統合ベクトル化がソリューション要件である場合、インデックスをロードするためにはプルモデル(インデクサー)を使用する必要があることが記述されており、関連するリンクが追加されています。また、データのインポートに関する方法や使用するツールの詳細も更新され、利用可能なデータソースのリストに「OneLake files and shortcuts」や「SharePoint Online (preview)」が追加されています。
これにより、ユーザーはAzure AI Searchでのデータインポート方法の最新情報を得ることができ、特定の要件に対する適切なアプローチを選択しやすくなっています。
articles/search/vector-search-how-to-generate-embeddings.md
Diff
@@ -9,12 +9,12 @@ ms.service: cognitive-search
ms.custom:
- ignite-2023
ms.topic: how-to
-ms.date: 08/05/2024
+ms.date: 09/19/2024
---
# Generate embeddings for search queries and documents
-Azure AI Search doesn't host vectorization models, so one of your challenges is creating embeddings for query inputs and outputs. You can use any embedding model, but this article assumes Azure OpenAI embedding models.
+Azure AI Search doesn't host vectorization models, so one of your challenges is creating embeddings for query inputs and outputs. You can use any supported embedding model, but this article assumes Azure OpenAI embedding models for the steps.
We recommend [integrated vectorization](vector-search-integrated-vectorization.md), which provides built-in data chunking and vectorization. Integrated vectorization takes a dependency on indexers, skillsets, and built-in or custom skills that point to a model that executes externally from Azure AI Search.
@@ -30,13 +30,13 @@ If you want to handle data chunking and vectorization yourself, we provide demos
## Create resources in the same region
-If you want resources in the same region, start with:
+Integrated vectorization requires resources to be in the same region:
-1. [Check regions for a text embedding model](/azure/ai-services/openai/concepts/models#standard-and-global-standard-deployment-model-quota).
+1. [Check regions for a text embedding model](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability).
1. [Find the same region for Azure AI Search](search-region-support.md).
-1. To support hybrid queries that include [semantic ranking](semantic-how-to-query-request.md), or if you want to try machine learning model integration using a [custom skill](cognitive-search-custom-skill-interface.md) in an [AI enrichment pipeline](cognitive-search-concept-intro.md), note the Azure AI Search regions that provide those features.
+1. To support hybrid queries that include [semantic ranking](semantic-how-to-query-request.md), or if you want to try machine learning model integration using a [custom skill](cognitive-search-custom-skill-interface.md) in an [AI enrichment pipeline](cognitive-search-concept-intro.md), select an Azure AI Search region that provides those features.
## Generate an embedding for an improvised query
@@ -64,16 +64,23 @@ Output is a vector array of 1,536 dimensions.
## Tips and recommendations for embedding model integration
-+ **Identify use cases**: Evaluate the specific use cases where embedding model integration for vector search features can add value to your search solution. This can include matching image content with text content, cross-lingual searches, or finding similar documents.
++ **Identify use cases**: Evaluate the specific use cases where embedding model integration for vector search features can add value to your search solution. This can include multimodal or matching image content with text content, multilingual search, or similarity search.
+
+ **Design a chunking strategy**: Embedding models have limits on the number of tokens they can accept, which introduces a data chunking requirement for large files. For more information, see [Chunk large documents for vector search solutions](vector-search-how-to-chunk-documents.md).
-+ **Optimize cost and performance**: Vector search can be resource-intensive and is subject to maximum limits, so consider only vectorizing the fields that contain semantic meaning. [Reduce vector size]() so that you can store more vectors for the same price.
+
++ **Optimize cost and performance**: Vector search can be resource-intensive and is subject to maximum limits, so consider only vectorizing the fields that contain semantic meaning. [Reduce vector size](vector-search-how-to-configure-compression-storage.md) so that you can store more vectors for the same price.
+
+ **Choose the right embedding model:** Select an appropriate model for your specific use case, such as word embeddings for text-based searches or image embeddings for visual searches. Consider using pretrained models like **text-embedding-ada-002** from OpenAI or **Image Retrieval** REST API from [Azure AI Computer Vision](/azure/ai-services/computer-vision/how-to/image-retrieval).
+
+ **Normalize Vector lengths**: Ensure that the vector lengths are normalized before storing them in the search index to improve the accuracy and performance of similarity search. Most pretrained models already are normalized but not all.
+
+ **Fine-tune the model**: If needed, fine-tune the selected model on your domain-specific data to improve its performance and relevance to your search application.
+
+ **Test and iterate**: Continuously test and refine your embedding model integration to achieve the desired search performance and user satisfaction.
## Next steps
+ [Understanding embeddings in Azure OpenAI Service](/azure/ai-services/openai/concepts/understand-embeddings)
+ [Learn how to generate embeddings](/azure/ai-services/openai/how-to/embeddings?tabs=console)
+ [Tutorial: Explore Azure OpenAI Service embeddings and document search](/azure/ai-services/openai/tutorials/embeddings?tabs=command-line)
++ [Tutorial: Choose a model (RAG solutions in Azure AI Search)](tutorial-rag-build-solution-models.md)
Summary
{
"modification_type": "minor update",
"modification_title": "埋め込み生成に関する文書の更新"
}
Explanation
この変更は、「vector-search-how-to-generate-embeddings.md」ファイルの更新に関連しており、14行が追加され、7行が削除され、全体で21行の変更が行われています。
主な変更点の一つは、文書の日付が「08/05/2024」から「09/19/2024」に更新されたことです。また、「サポートされている埋め込みモデル」を明示し、この文書で扱うモデルとしてAzure OpenAI埋め込みモデルを前提とすることが強調されています。
加えて、統合ベクトル化についての説明があり、リソースが同じ地域に配置される必要があることが強調されました。これに伴い、地域チェックのためのリンクが更新され、特定の機能に対応するAzure AI Searchの地域を選択する際の注意点が明確化されています。
他にも、埋め込みモデル統合のためのヒントや推奨事項が追加され、データの塊戦略、コストとパフォーマンスの最適化、適切な埋め込みモデルの選択など、具体的なアクションポイントも示されています。さらに、ベクトルの長さを正規化する必要性や、モデルのファインチューニングを行うことの重要性についても触れられています。
これらの変更により、ユーザーはAzure AI Searchにおける埋め込み生成のプロセスをよりよく理解し、効果的な検索ソリューションを構築するための具体的なガイダンスを得ることができます。
articles/search/vector-search-index-size.md
Diff
@@ -9,7 +9,7 @@ ms.service: cognitive-search
ms.custom:
- build-2024
ms.topic: conceptual
-ms.date: 08/05/2024
+ms.date: 09/19/2024
---
# Vector index size and staying under limits
Summary
{
"modification_type": "minor update",
"modification_title": "ベクトルインデックスサイズの文書更新"
}
Explanation
この変更は、「vector-search-index-size.md」ファイルに関するもので、1行が追加され、1行が削除され、合計で2行の変更が行われています。
最も重要な変更は、文書の日付が「08/05/2024」から「09/19/2024」に更新されたことです。この更新により、文書の情報が最新のものであることが確保され、利用者は正確な日付を基に情報を参照できるようになります。
この文書は、ベクトルインデックスのサイズと、そのサイズを制限内に保つ方法についての内容を提供しており、更新された日付は、関連する情報やガイドラインが最近のものであることをユーザーに示しています。
articles/search/vector-search-ranking.md
Diff
@@ -8,8 +8,8 @@ ms.author: jlembicz
ms.service: cognitive-search
ms.custom:
- ignite-2023
-ms.topic: conceptual
-ms.date: 08/05/2024
+ms.topic: concept-article
+ms.date: 09/19/2024
---
# Relevance in vector search
Summary
{
"modification_type": "minor update",
"modification_title": "ベクトル検索の関連性に関する文書更新"
}
Explanation
この変更は、「vector-search-ranking.md」ファイルに関連しており、2行が追加され、2行が削除され、合計で4行の変更が行われています。
主な変更点は、文書のトピックが「conceptual」から「concept-article」に変更されたことと、文書の日付が「08/05/2024」から「09/19/2024」に更新されたことです。これにより、文書の分類が明確化され、情報の参照がしやすくなっています。
この文書は、ベクトル検索における関連性についての内容を提供しており、更新された日付により、ユーザーは最新の情報を基に理解を深めることができます。全体として、これらの変更は文書の正確性と使いやすさの向上に寄与しています。
articles/search/vector-store.md
Diff
@@ -8,15 +8,15 @@ ms.author: robertlee
ms.service: cognitive-search
ms.custom:
- ignite-2023
-ms.topic: conceptual
-ms.date: 02/14/2024
+ms.topic: concept-article
+ms.date: 09/19/2024
---
# Vector storage in Azure AI Search
Azure AI Search provides vector storage and configurations for [vector search](vector-search-overview.md) and [hybrid search](hybrid-search-overview.md). Support is implemented at the field level, which means you can combine vector and nonvector fields in the same search corpus.
-Vectors are stored in a search index. Use the [Create Index REST API](/rest/api/searchservice/indexes/create-or-update) or an equivalent Azure SDK method to [create the vector store](vector-search-how-to-create-index.md).
+Vectors are stored in a search index. Use the [Create Index REST API](/rest/api/searchservice/indexes/create) or an equivalent Azure SDK method to [create the vector store](vector-search-how-to-create-index.md).
Considerations for vector storage include the following points:
@@ -54,7 +54,7 @@ Vector fields are distinguished by their data type and vector-specific propertie
}
```
-Vector fields are of type `Collection(Edm.Single)`.
+Vector fields have [specific data types](/rest/api/searchservice/supported-data-types#edm-data-types-for-vector-fields). Currently, `Collection(Edm.Single)` is the most common, but using narrow data types can save on storage.
Vector fields must be searchable and retrievable, but they can't be filterable, facetable, or sortable, or have analyzers, normalizers, or synonym map assignments.
@@ -146,7 +146,7 @@ Here's a screenshot showing search results in [Search Explorer](search-explorer.
## Physical structure and size
-In Azure AI Search, the physical structure of an index is largely an internal implementation. You can access its schema, load and query its content, monitor its size, and manage capacity, but the clusters themselves (inverted and vector indexes), and other files and folders) are managed internally by Microsoft.
+In Azure AI Search, the physical structure of an index is largely an internal implementation. You can access its schema, load and query its content, monitor its size, and manage capacity, but the clusters themselves (inverted and vector indexes), and other files and folders are managed internally by Microsoft.
The size and substance of an index is determined by:
Summary
{
"modification_type": "minor update",
"modification_title": "ベクトルストレージに関する文書更新"
}
Explanation
この変更は、「vector-store.md」ファイルに関連しており、5行が追加され、5行が削除され、合計で10行の変更が行われています。
主な変更点として、文書の日付が「02/14/2024」から「09/19/2024」に更新され、トピック分類が「conceptual」から「concept-article」に変更されました。これにより、文書の内容がより適切に分類され、情報に対する明確さが向上しています。
いくつかのテキストも修正されており、特に「Create Index REST API」のリンクが「create-or-update」から「create」に変更され、内容が最新のAPIを反映しています。また、ベクトルフィールドのデータ型に関する説明も具体化され、リンクが追加されました。これにより、利用者はデータ型に関する詳細情報を直接参照できるようになります。
全体として、これらの変更は文書の正確性を向上させ、ユーザーが関連する情報を容易に見つけられるようにすることを目的としています。