View Diff on GitHub
# Highlights
このドキュメントの変更は、用語「AI Foundry」を「Azure AI Foundry」に修正することを目的とした軽微な更新です。これにより、製品名が一貫して使用され、正確な情報が提供されるようになっています。
New features
特に新しい機能の追加はありませんが、用語の修正により、サービス名の明確化と一貫性の向上が図られています。
Breaking changes
特に重大な変更や後方互換性の問題はありません。
Other updates
用語の一貫性を保つために、関連するすべてのファイルで「Azure AI Foundry」という用語が使用されるよう修正されました。
Insights
この変更は、Azure AI Foundryという名称がドキュメント全体で正確に使用されるように修正されたものです。これにより、ユーザーは誤解を避け、必要なリソースを明確に識別できるようになっています。用語の一貫性は技術文書の基本であり、これを守ることで、ユーザーが情報をより迅速かつ効率的に理解できるという利点があります。特に、名称が技術文書の品質に与える影響は大きく、誤解を避けるためにも重要な要素となります。読者にとって有用な情報を正確に、かつ効率よく提供するためには、このような細部にわたる修正が不可欠です。
Summary Table
Modified Contents
articles/ai-services/language-service/includes/use-language-studio.md
Diff
@@ -11,4 +11,4 @@ ms.custom: include, ignite-2024
---
> [!TIP]
-> You can use [**AI Foundry**](../../../ai-studio/what-is-ai-studio.md) to try summarization without needing to write code.
+> You can use [**Azure AI Foundry**](../../../ai-studio/what-is-ai-studio.md) to try summarization without needing to write code.
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryをAzure AI Foundryに更新"
}
Explanation
この変更は、ドキュメント内の「AI Foundry」という用語を「Azure AI Foundry」に更新することを目的としています。この修正によって、利用者が製品の正確な名称を理解しやすくなります。具体的には、元のテキストの「AI Foundry」の部分が修正され、文の内容は変わらず、ドキュメントの一貫性と正確性が向上します。この変更は軽微な更新として分類され、小さな代替文が追加されています。
articles/ai-services/language-service/personally-identifiable-information/includes/use-language-studio.md
Diff
@@ -9,4 +9,4 @@ ms.custom: include, ignite-2024
---
> [!TIP]
-> You can use [**AI Foundry**](../../../../ai-studio/what-is-ai-studio.md) to try summarization without needing to write code.
+> You can use [**Azure AI Foundry**](../../../../ai-studio/what-is-ai-studio.md) to try summarization without needing to write code.
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryをAzure AI Foundryに更新"
}
Explanation
この変更は、ドキュメント内の「AI Foundry」という用語を「Azure AI Foundry」に変更することを目的としています。この修正により、読者に対し、製品名の正確性と一貫性が向上します。具体的には、元々のテキストの「AI Foundry」が「Azure AI Foundry」に書き換えられており、内容は維持されています。これは軽微な更新であり、情報の明確さを高めるために重要な修正となります。
articles/ai-services/language-service/personally-identifiable-information/overview.md
Diff
@@ -25,7 +25,7 @@ The Conversational PII detection models (both version `2024-11-01-preview` and `
As of June 2024, we now provide General Availability support for the Conversational PII service (English-language only). Customers can now redact transcripts, chats, and other text written in a conversational style (i.e. text with “um”s, “ah”s, multiple speakers, and the spelling out of words for more clarity) with better confidence in AI quality, Azure SLA support and production environment support, and enterprise-grade security in mind.
> [!TIP]
-> Try out PII detection [in AI Foundry portal](https://ai.azure.com/explore/language), where you can [utilize a currently existing Language Studio resource or create a new AI Foundry resource](../../../ai-studio/ai-services/connect-ai-services.md)
+> Try out PII detection [in Azure AI Foundry portal](https://ai.azure.com/explore/language), where you can [utilize a currently existing Language Studio resource or create a new Azure AI Foundry resource](../../../ai-studio/ai-services/connect-ai-services.md)
* [**Quickstarts**](quickstart.md) are getting-started instructions to guide you through making requests to the service.
* [**How-to guides**](how-to-call.md) contain instructions for using the service in more specific or customized ways.
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryポータルをAzure AI Foundryポータルに更新"
}
Explanation
この変更は、ドキュメント内の「AI Foundryポータル」という表現を「Azure AI Foundryポータル」に修正することを目的としています。この修正により、製品名が一貫して正確に記載されるようになり、読者に対して明確な情報を提供します。具体的には、元のテキストの「AI Foundryポータル」が「Azure AI Foundryポータル」に変更され、そこには「新しいAzure AI Foundryリソースを作成する」という文も含まれています。この更新は軽微なものでありながら、用語の適切な使用を促進し、情報の一貫性と明確さを向上させる重要な修正となります。
articles/ai-services/language-service/summarization/includes/use-language-studio.md
Diff
@@ -11,4 +11,4 @@ ms.custom: include, build-2024, ignite-2024
---
> [!TIP]
-> You can use [**AI Foundry**](../../../../ai-studio/what-is-ai-studio.md) to try summarization without needing to write code.
+> You can use [**Azure AI Foundry**](../../../../ai-studio/what-is-ai-studio.md) to try summarization without needing to write code.
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryをAzure AI Foundryに更新"
}
Explanation
この変更は、文書内の「AI Foundry」という表記を「Azure AI Foundry」に修正することを目的としています。具体的には、サマリー機能を試す際の案内文において、製品名がより正確で一貫性のあるものとなるように改善されています。この修正により、読者はAzureの特定のサービスに正確に従うことができ、情報の明確性が向上します。軽微な更新ですが、用語の適切な使用が強調され、利用者の理解を助ける重要なポイントとなっています。
articles/ai-services/language-service/summarization/overview.md
Diff
@@ -22,7 +22,7 @@ Use this article to learn more about this feature, and how to use it in your app
Out of the box, the service provides summarization solutions for three types of genre, plain texts, conversations, and native documents. Text summarization only accepts plain text blocks, and conversation summarization accept conversational input, including various speech audio signals in order for the model to effectively segment and summarize, and native document can directly summarize for documents in their native formats, such as Words, PDF, etc.
> [!TIP]
-> Try out Summarization [in AI Foundry portal](https://ai.azure.com/explore/language), where you can [utilize a currently existing Language Studio resource or create a new AI Foundry resource](../../../ai-studio/ai-services/connect-ai-services.md) in order to use this service.
+> Try out Summarization [in Azure AI Foundry portal](https://ai.azure.com/explore/language), where you can [utilize a currently existing Language Studio resource or create a new Azure AI Foundry resource](../../../ai-studio/ai-services/connect-ai-services.md) in order to use this service.
# [Text summarization](#tab/text-summarization)
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryポータルをAzure AI Foundryポータルに更新"
}
Explanation
この変更は、ドキュメント内での「AI Foundryポータル」を「Azure AI Foundryポータル」に修正するもので、主に製品名の明確化と一貫性を向上させることを目的としています。この修正により、読者はサービスを試す際に正しいポータル名を認識できるようになり、誤解を防ぐことができます。具体的には、サマリー機能を試すためのリンク情報が更新されており、文書の内容が最新の情報に基づいていることを保証しています。この軽微な更新は、用語の適切な使用を促進し、利用者にとって有益な情報提供を実現しています。
articles/ai-services/language-service/text-analytics-for-health/overview.md
Diff
@@ -19,7 +19,7 @@ ms.custom: language-service-health, ignite-2024
Text Analytics for health is one of the prebuilt features offered by [Azure AI Language](../overview.md). It is a cloud-based API service that applies machine-learning intelligence to extract and label relevant medical information from a variety of unstructured texts such as doctor's notes, discharge summaries, clinical documents, and electronic health records.
> [!TIP]
-> Try out Text Analytics for health [in AI Foundry portal](https://ai.azure.com/explore/language), where you can [utilize a currently existing Language Studio resource or create a new AI Foundry resource](../../../ai-studio/ai-services/connect-ai-services.md) in order to use this service.
+> Try out Text Analytics for health [in Azure AI Foundry portal](https://ai.azure.com/explore/language), where you can [utilize a currently existing Language Studio resource or create a new Azure AI Foundry resource](../../../ai-studio/ai-services/connect-ai-services.md) in order to use this service.
This documentation contains the following types of articles:
* The [**quickstart article**](quickstart.md) provides a short tutorial that guides you with making your first request to the service.
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryポータルをAzure AI Foundryポータルに更新"
}
Explanation
この変更は、ドキュメント内で「AI Foundryポータル」という表現を「Azure AI Foundryポータル」に更新するもので、サービス名を正確に反映させることを目的としています。この修正により、ユーザーはテキスト分析機能を試す際に、正しいポータル名を確認でき、一貫したブランド体験が提供されます。具体的には、テキスト分析を行うためのリンク情報が更新されており、文書の正確性と明瞭さが向上しています。この軽微な更新は、内容の明確化を助け、利用者が必要な情報にすばやくアクセスできるようにする重要な要素です。
articles/ai-studio/ai-services/content-safety-overview.md
Diff
@@ -14,7 +14,7 @@ author: PatrickFarley
# Content Safety in Azure AI Foundry portal
-Azure AI Content Safety is an AI service that detects harmful user-generated and AI-generated content in applications and services. Azure AI Content Safety includes various APIs that allow you to detect and prevent the output of harmful content. The interactive Content Safety **try out** page in AI Foundry portal allows you to view, explore, and try out sample code for detecting harmful content across different modalities.
+Azure AI Content Safety is an AI service that detects harmful user-generated and AI-generated content in applications and services. Azure AI Content Safety includes various APIs that allow you to detect and prevent the output of harmful content. The interactive Content Safety **try out** page in Azure AI Foundry portal allows you to view, explore, and try out sample code for detecting harmful content across different modalities.
## Features
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryポータルをAzure AI Foundryポータルに更新"
}
Explanation
この変更は、ドキュメント内の「AI Foundryポータル」を「Azure AI Foundryポータル」に修正するもので、ブランド名の一貫性を確保することを目的としています。この修正により、Azure AI Content Safetyサービスについての説明がより明確で、ユーザーが必要な情報を簡単に認識できるようになります。具体的には、ユーザーが有害なコンテンツを検出するためのサンプルコードを試行するためのリンクが更新されており、サービスの利便性を向上させています。この軽微な更新は、内容の正確性を高め、ユーザーエクスペリエンスを向上させる重要な要素です。
articles/ai-studio/ai-services/how-to/connect-ai-services.md
Diff
@@ -1,7 +1,7 @@
---
-title: How to use Azure AI services in AI Foundry portal
+title: How to use Azure AI services in Azure AI Foundry portal
titleSuffix: Azure AI Foundry
-description: Learn how to use Azure AI services in AI Foundry portal. You can use existing Azure AI services resources in AI Foundry portal by creating a connection to the resource.
+description: Learn how to use Azure AI services in Azure AI Foundry portal. You can use existing Azure AI services resources in Azure AI Foundry portal by creating a connection to the resource.
manager: nitinme
ms.service: azure-ai-studio
ms.custom:
@@ -15,20 +15,20 @@ ms.author: eur
author: eric-urban
---
-# How to use Azure AI services in AI Foundry portal
+# How to use Azure AI services in Azure AI Foundry portal
You might have existing resources for Azure AI services that you used in the old studios such as Azure OpenAI Studio or Speech Studio. You can pick up where you left off by using your existing resources in the [Azure AI Foundry portal](https://ai.azure.com).
-This article describes how to use new or existing Azure AI services resources in an AI Foundry project.
+This article describes how to use new or existing Azure AI services resources in an Azure AI Foundry project.
## Usage scenarios
-Depending on the AI service and model you want to use, you can use them in AI Foundry portal via:
-- [Bring your existing Azure AI services resources](#bring-your-existing-azure-ai-services-resources-into-a-project) into a project. You can use your existing Azure AI services resources in an AI Foundry project by creating a connection to the resource.
+Depending on the AI service and model you want to use, you can use them in Azure AI Foundry portal via:
+- [Bring your existing Azure AI services resources](#bring-your-existing-azure-ai-services-resources-into-a-project) into a project. You can use your existing Azure AI services resources in an Azure AI Foundry project by creating a connection to the resource.
- The [model catalog](#discover-azure-ai-models-in-the-model-catalog). You don't need a project to browse and discover Azure AI models. Some of the Azure AI services are available for you to try via the model catalog without a project. Some Azure AI services require a project to use in the playgrounds.
- The [project-level playgrounds](#try-azure-ai-services-in-the-project-level-playgrounds). You need a project to try Azure AI services such as Azure AI Speech and Azure AI Language.
- [Azure AI Services demo pages](#try-out-azure-ai-services-demos). You can browse Azure AI services capabilities and step through the demos. You can try some limited demos for free without a project.
-- [Fine-tune](#fine-tune-azure-ai-services-models) models. You can fine-tune a subset of Azure AI services models in AI Foundry portal.
+- [Fine-tune](#fine-tune-azure-ai-services-models) models. You can fine-tune a subset of Azure AI services models in Azure AI Foundry portal.
- [Deploy](#deploy-models-to-production) models. You can deploy base models and fine-tuned models to production. Most Azure AI services models are already deployed and ready to use.
## Bring your existing Azure AI services resources into a project
@@ -44,14 +44,14 @@ When you create a project for the first time, you also create a hub. When you cr
:::image type="content" source="../../media/how-to/projects/projects-create-resource.png" alt-text="Screenshot of the create resource page within the create project dialog." lightbox="../../media/how-to/projects/projects-create-resource.png":::
-For more details about creating a project, see the [create an AI Foundry project](../../how-to/create-projects.md) how-to guide or the [create a project and use the chat playground](../../quickstarts/get-started-playground.md) quickstart.
+For more details about creating a project, see the [create an Azure AI Foundry project](../../how-to/create-projects.md) how-to guide or the [create a project and use the chat playground](../../quickstarts/get-started-playground.md) quickstart.
### Connect Azure AI services after you create a project
-To use your existing Azure AI services resources (such as Azure AI Speech) in an AI Foundry project, you need to create a connection to the resource.
+To use your existing Azure AI services resources (such as Azure AI Speech) in an Azure AI Foundry project, you need to create a connection to the resource.
-1. Create an AI Foundry project. For detailed instructions, see [Create an AI Foundry project](../../how-to/create-projects.md).
-1. Go to your AI Foundry project.
+1. Create an Azure AI Foundry project. For detailed instructions, see [Create an Azure AI Foundry project](../../how-to/create-projects.md).
+1. Go to your Azure AI Foundry project.
1. Select **Management center** from the left pane.
1. Select **Connected resources** (under **Project**) from the left pane.
1. Select **+ New connection**.
@@ -72,12 +72,12 @@ To use your existing Azure AI services resources (such as Azure AI Speech) in an
You can discover Azure AI models in the model catalog without a project. Some Azure AI services are available for you to try via the model catalog without a project.
-1. Go to the [AI Foundry home page](https://ai.azure.com).
+1. Go to the [Azure AI Foundry home page](https://ai.azure.com).
1. Select the tile that says **Model catalog and benchmarks**.
:::image type="content" source="../../media/explore/ai-studio-home-model-catalog.png" alt-text="Screenshot of the home page in Azure AI Foundry portal with the option to select the model catalog tile." lightbox="../../media/explore/ai-studio-home-model-catalog.png":::
- If you don't see this tile, you can also go directly to the [Azure AI model catalog page](https://ai.azure.com/explore/models) in AI Foundry portal.
+ If you don't see this tile, you can also go directly to the [Azure AI model catalog page](https://ai.azure.com/explore/models) in Azure AI Foundry portal.
1. From the **Collections** dropdown, select **Microsoft**. Search for Azure AI services models by entering **azure-ai** in the search box.
@@ -89,7 +89,7 @@ You can discover Azure AI models in the model catalog without a project. Some Az
In the project-level playgrounds, you can try Azure AI services such as Azure AI Speech and Azure AI Language.
-1. Go to your AI Foundry project. If you need to create a project, see [Create an AI Foundry project](../../how-to/create-projects.md).
+1. Go to your Azure AI Foundry project. If you need to create a project, see [Create an Azure AI Foundry project](../../how-to/create-projects.md).
1. Select **Playgrounds** from the left pane and then select a playground to use. In this example, select **Try the Speech playground**.
:::image type="content" source="../../media/ai-services/playgrounds/azure-ai-services-playgrounds.png" alt-text="Screenshot of the project level playgrounds that you can use." lightbox="../../media/ai-services/playgrounds/azure-ai-services-playgrounds.png":::
@@ -106,12 +106,12 @@ If you have other connected resources, you can use them in the corresponding pla
You can browse Azure AI services capabilities and step through the demos. You can try some limited demos for free without a project.
-1. Go to the [AI Foundry home page](https://ai.azure.com) and make sure you're signed in with the Azure subscription that has your Azure AI services resource.
+1. Go to the [Azure AI Foundry home page](https://ai.azure.com) and make sure you're signed in with the Azure subscription that has your Azure AI services resource.
1. Find the tile that says **Explore Azure AI Services** and select **Try now**.
:::image type="content" source="../../media/explore/home-ai-services.png" alt-text="Screenshot of the home page in Azure AI Foundry portal with the option to select Azure AI Services." lightbox="../../media/explore/home-ai-services.png":::
- If you don't see this tile, you can also go directly to the [Azure AI Services page](https://ai.azure.com/explore/aiservices) in AI Foundry portal.
+ If you don't see this tile, you can also go directly to the [Azure AI Services page](https://ai.azure.com/explore/aiservices) in Azure AI Foundry portal.
1. You should see tiles for Azure AI services that you can try. Select a tile to get to the demo page for that service. For example, select **Language + Translator**.
@@ -121,9 +121,9 @@ The presentation and flow of the demo pages might vary depending on the service.
## Fine-tune Azure AI services models
-In AI Foundry portal, you can fine-tune some Azure AI services models. For example, you can fine-tune a model for custom speech.
+In Azure AI Foundry portal, you can fine-tune some Azure AI services models. For example, you can fine-tune a model for custom speech.
-1. Go to your AI Foundry project. If you need to create a project, see [Create an AI Foundry project](../../how-to/create-projects.md).
+1. Go to your Azure AI Foundry project. If you need to create a project, see [Create an Azure AI Foundry project](../../how-to/create-projects.md).
1. Select **Fine-tuning** from the left pane.
1. Select **AI Service fine-tuning**.
@@ -136,7 +136,7 @@ In AI Foundry portal, you can fine-tune some Azure AI services models. For examp
Once you have a project, several Azure AI services models are already deployed and ready to use.
-1. Go to your AI Foundry project.
+1. Go to your Azure AI Foundry project.
1. Select **Management center** from the left pane.
1. Select **Models + endpoints** (under **Project**) from the left pane.
1. Select the **Service deployments** tab to view the list of Azure AI services models that are already deployed.
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryポータルをAzure AI Foundryポータルに更新"
}
Explanation
この変更は、ドキュメント内の「AI Foundryポータル」を「Azure AI Foundryポータル」に修正するもので、ブランドの一貫性を維持することを目的としています。この修正により、Azure AI サービスを利用するためのリソース接続の説明において、より正確で明確な情報が提供されます。具体的には、新規または既存のAzure AIサービスリソースの利用方法、プロジェクトの作成手順、およびデモページのナビゲーションが改良されています。全体として、この軽微な更新は、ユーザーエクスペリエンスを向上させ、Azure AIサービスを効果的に活用するための手助けとなります。
articles/ai-studio/ai-services/how-to/connect-azure-openai.md
Diff
@@ -1,7 +1,7 @@
---
-title: How to use Azure OpenAI Service in AI Foundry portal
+title: How to use Azure OpenAI Service in Azure AI Foundry portal
titleSuffix: Azure AI Foundry
-description: Learn how to use Azure OpenAI Service in AI Foundry portal.
+description: Learn how to use Azure OpenAI Service in Azure AI Foundry portal.
manager: nitinme
ms.service: azure-ai-studio
ms.custom:
@@ -15,28 +15,28 @@ ms.author: eur
author: eric-urban
---
-# How to use Azure OpenAI Service in AI Foundry portal
+# How to use Azure OpenAI Service in Azure AI Foundry portal
-You might have existing Azure OpenAI Service resources and model deployments that you created using the old Azure OpenAI Studio or via code. You can pick up where you left off by using your existing resources in AI Foundry portal.
+You might have existing Azure OpenAI Service resources and model deployments that you created using the old Azure OpenAI Studio or via code. You can pick up where you left off by using your existing resources in Azure AI Foundry portal.
This article describes how to:
- Use Azure OpenAI Service models outside of a project.
-- Use Azure OpenAI Service models and an AI Foundry project.
+- Use Azure OpenAI Service models and an Azure AI Foundry project.
> [!TIP]
-> You can use Azure OpenAI Service in AI Foundry portal without creating a project or a connection. When you're working with the models and deployments, we recommend that you work outside of a project. Eventually, you want to work in a project for tasks such as managing connections, permissions, and deploying the models to production.
+> You can use Azure OpenAI Service in Azure AI Foundry portal without creating a project or a connection. When you're working with the models and deployments, we recommend that you work outside of a project. Eventually, you want to work in a project for tasks such as managing connections, permissions, and deploying the models to production.
## Use Azure OpenAI models outside of a project
-You can use your existing Azure OpenAI model deployments in AI Foundry portal outside of a project. Start here if you previously deployed models using the old Azure OpenAI Studio or via the Azure OpenAI Service SDKs and APIs.
+You can use your existing Azure OpenAI model deployments in Azure AI Foundry portal outside of a project. Start here if you previously deployed models using the old Azure OpenAI Studio or via the Azure OpenAI Service SDKs and APIs.
To use Azure OpenAI Service outside of a project, follow these steps:
-1. Go to the [AI Foundry home page](https://ai.azure.com) and make sure you're signed in with the Azure subscription that has your Azure OpenAI Service resource.
+1. Go to the [Azure AI Foundry home page](https://ai.azure.com) and make sure you're signed in with the Azure subscription that has your Azure OpenAI Service resource.
1. Find the tile that says **Focused on Azure OpenAI Service?** and select **Let's go**.
:::image type="content" source="../../media/azure-openai-in-ai-studio/home-page.png" alt-text="Screenshot of the home page in Azure AI Foundry portal with the option to select Azure OpenAI Service." lightbox="../../media/azure-openai-in-ai-studio/home-page.png":::
- If you don't see this tile, you can also go directly to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in AI Foundry portal.
+ If you don't see this tile, you can also go directly to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in Azure AI Foundry portal.
1. You should see your existing Azure OpenAI Service resources. In this example, the Azure OpenAI Service resource `contoso-azure-openai-eastus` is selected.
@@ -48,7 +48,7 @@ If you create more Azure OpenAI Service resources later (such as via the Azure p
## <a name="project"></a> Use Azure OpenAI Service in a project
-You might eventually want to use a project for tasks such as managing connections, permissions, and deploying models to production. You can use your existing Azure OpenAI Service resources in an AI Foundry project.
+You might eventually want to use a project for tasks such as managing connections, permissions, and deploying models to production. You can use your existing Azure OpenAI Service resources in an Azure AI Foundry project.
Let's look at two ways to connect Azure OpenAI Service resources to a project:
@@ -61,13 +61,13 @@ When you create a project for the first time, you also create a hub. When you cr
:::image type="content" source="../../media/how-to/projects/projects-create-resource.png" alt-text="Screenshot of the create resource page within the create project dialog." lightbox="../../media/how-to/projects/projects-create-resource.png":::
-For more details about creating a project, see the [create an AI Foundry project](../../how-to/create-projects.md) how-to guide or the [create a project and use the chat playground](../../quickstarts/get-started-playground.md) quickstart.
+For more details about creating a project, see the [create an Azure AI Foundry project](../../how-to/create-projects.md) how-to guide or the [create a project and use the chat playground](../../quickstarts/get-started-playground.md) quickstart.
### Connect Azure OpenAI Service after you create a project
If you already have a project and you want to connect your existing Azure OpenAI Service resources, follow these steps:
-1. Go to your AI Foundry project.
+1. Go to your Azure AI Foundry project.
1. Select **Management center** from the left pane.
1. Select **Connected resources** (under **Project**) from the left pane.
1. Select **+ New connection**.
@@ -91,7 +91,7 @@ You can try Azure OpenAI models in the Azure OpenAI Service playgrounds outside
> [!TIP]
> You can also try Azure OpenAI models in the project-level playgrounds. However, while you're only working with the Azure OpenAI Service models, we recommend working outside of a project.
-1. Go to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in AI Foundry portal.
+1. Go to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in Azure AI Foundry portal.
1. Select a playground from under **Resource playground** in the left pane.
:::image type="content" source="../../media/ai-services/playgrounds/azure-openai-studio-playgrounds.png" alt-text="Screenshot of the playgrounds that you can select to use Azure OpenAI Service." lightbox="../../media/ai-services/playgrounds/azure-openai-studio-playgrounds.png":::
@@ -106,9 +106,9 @@ Each playground has different model requirements and capabilities. The supported
## Fine-tune Azure OpenAI models
-In AI Foundry portal, you can fine-tune several Azure OpenAI models. The purpose is typically to improve model performance on specific tasks or to introduce information that wasn't well represented when you originally trained the base model.
+In Azure AI Foundry portal, you can fine-tune several Azure OpenAI models. The purpose is typically to improve model performance on specific tasks or to introduce information that wasn't well represented when you originally trained the base model.
-1. Go to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in AI Foundry portal to fine-tune Azure OpenAI models.
+1. Go to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in Azure AI Foundry portal to fine-tune Azure OpenAI models.
1. Select **Fine-tuning** from the left pane.
:::image type="content" source="../../media/ai-services/fine-tune-azure-openai.png" alt-text="Screenshot of the page to select fine-tuning of Azure OpenAI Service models." lightbox="../../media/ai-services/fine-tune-azure-openai.png":::
@@ -117,16 +117,16 @@ In AI Foundry portal, you can fine-tune several Azure OpenAI models. The purpose
1. Follow the [detailed how to guide](../../../ai-services/openai/how-to/fine-tuning.md?context=/azure/ai-studio/context/context) to fine-tune the model.
For more information about fine-tuning Azure AI models, see:
-- [Overview of fine-tuning in AI Foundry portal](../../concepts/fine-tuning-overview.md)
+- [Overview of fine-tuning in Azure AI Foundry portal](../../concepts/fine-tuning-overview.md)
- [How to fine-tune Azure OpenAI models](../../../ai-services/openai/how-to/fine-tuning.md?context=/azure/ai-studio/context/context)
- [Azure OpenAI models that are available for fine-tuning](../../../ai-services/openai/concepts/models.md?context=/azure/ai-studio/context/context)
## Deploy models to production
-You can deploy Azure OpenAI base models and fine-tuned models to production via the AI Foundry portal.
+You can deploy Azure OpenAI base models and fine-tuned models to production via the Azure AI Foundry portal.
-1. Go to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in AI Foundry portal.
+1. Go to the [Azure OpenAI Service page](https://ai.azure.com/resource/overview) in Azure AI Foundry portal.
1. Select **Deployments** from the left pane.
:::image type="content" source="../../media/ai-services/endpoint/models-endpoints-azure-openai-deployments.png" alt-text="Screenshot of the models and endpoints page to view and create Azure OpenAI Service deployments." lightbox="../../media/ai-services/endpoint/models-endpoints-azure-openai-deployments.png":::
@@ -145,5 +145,5 @@ At some point, you want to develop apps with code. Here are some developer resou
## Related content
-- [Azure OpenAI in AI Foundry portal](../../azure-openai-in-ai-studio.md)
+- [Azure OpenAI in Azure AI Foundry portal](../../azure-openai-in-ai-studio.md)
- [Use Azure AI services resources](./connect-ai-services.md)
Summary
{
"modification_type": "minor update",
"modification_title": "AI FoundryポータルをAzure AI Foundryポータルに更新"
}
Explanation
この変更では、ドキュメント内の「AI Foundryポータル」を「Azure AI Foundryポータル」に修正しています。この修正により、Azure OpenAIサービスを利用する際の情報がより一貫性を持ち、明確になります。具体的には、Azure OpenAIサービスのリソースを利用する手順、プロジェクトの作成方法、モデルのデプロイなどに関連する部分が全て更新されました。これにより、ユーザーが既存のリソースを利用する際や新たにプロジェクトを作成する際の流れが自然で分かりやすくなります。この軽微な更新は、ユーザーエクスペリエンスの向上や正確な情報提供に寄与しています。
articles/ai-studio/ai-services/how-to/quickstart-github-models.md
Diff
@@ -46,7 +46,7 @@ To obtain the key and endpoint:
1. Once you've signed in to your Azure account, you're taken to [Azure AI Foundry](https://ai.azure.com).
-1. At the top of the page, select **Go to your GitHub AI resource** to go to Azure AI Foundry / Github](https://ai.azure.com/github). It might take one or two minutes to load your initial model details in AI Foundry portal.
+1. At the top of the page, select **Go to your GitHub AI resource** to go to Azure AI Foundry / Github](https://ai.azure.com/github). It might take one or two minutes to load your initial model details in Azure AI Foundry portal.
1. The page is loaded with your model's details. Select the **Create a Deployment** button to deploy the model to your account.
Summary
{
"modification_type": "minor update",
"modification_title": "AI Foundryポータルの名称を更新"
}
Explanation
この変更は、ドキュメント内の「AI Foundryポータル」を「Azure AI Foundryポータル」に修正する非常に軽微な更新です。この修正により、GitHub AIリソースにアクセスする手順がより一貫性を持たせて明確になります。具体的には、Azureアカウントにサインインした後の手順で、リソースに移動する際の記述が正確になっています。この更新は、ユーザーがAzure AI Foundryポータル内での操作を行う際の理解を助け、正確な情報が提供されるようにしています。
articles/ai-studio/azure-openai-in-ai-studio.md
Diff
@@ -53,7 +53,7 @@ Use the left navigation area to perform your tasks with Azure OpenAI models:
While the previous sections show how to focus on just the Azure OpenAI Service, you can also incorporate other AI services and models from various providers in Azure AI Foundry portal. You can access the Azure OpenAI Service in two ways:
* When you focus on just the Azure OpenAI Service, as described in the previous sections, you don't use a project.
-* Azure AI Foundry portal uses a project to organize your work and save state while building customized AI apps. When you work in a project, you can connect to the service. For more information, see [How to use Azure OpenAI Service in AI Foundry portal](ai-services/how-to/connect-azure-openai.md#project).
+* Azure AI Foundry portal uses a project to organize your work and save state while building customized AI apps. When you work in a project, you can connect to the service. For more information, see [How to use Azure OpenAI Service in Azure AI Foundry portal](ai-services/how-to/connect-azure-openai.md#project).
When you create a project, you can try other models and tools along with Azure OpenAI. For example, the **Model catalog** in a project contains many more models than just Azure OpenAI models. Inside a project, you'll have access to features that are common across all AI services and models.
@@ -77,15 +77,15 @@ Pay attention to the top left corner of the screen to see which context you are
* When you are in the Azure AI Foundry portal landing page, with choices of where to go next, you see **Azure AI Foundry**.
- :::image type="content" source="media/azure-openai-in-ai-studio/ai-studio-no-project.png" alt-text="Screenshot shows top left corner of screen for AI Foundry without a project.":::
+ :::image type="content" source="media/azure-openai-in-ai-studio/ai-studio-no-project.png" alt-text="Screenshot shows top left corner of screen for Azure AI Foundry without a project.":::
* When you are in a project, you see **Azure AI Foundry / project name**. The project name allows you to switch between projects.
- :::image type="content" source="media/azure-openai-in-ai-studio/ai-studio-project.png" alt-text="Screenshot shows top left corner of screen for AI Foundry with a project.":::
+ :::image type="content" source="media/azure-openai-in-ai-studio/ai-studio-project.png" alt-text="Screenshot shows top left corner of screen for Azure AI Foundry with a project.":::
* When you're working with Azure OpenAI outside of a project, you see **Azure AI Foundry | Azure OpenAI / resource name**. The resource name allows you to switch between Azure OpenAI resources.
- :::image type="content" source="media/azure-openai-in-ai-studio/ai-studio-azure-openai.png" alt-text="Screenshot shows top left corner of screen for AI Foundry when using Azure OpenAI without a project.":::
+ :::image type="content" source="media/azure-openai-in-ai-studio/ai-studio-azure-openai.png" alt-text="Screenshot shows top left corner of screen for Azure AI Foundry when using Azure OpenAI without a project.":::
Use the **Azure AI Foundry** breadcrumb to navigate back to the Azure AI Foundry portal home page.
Summary
{
"modification_type": "minor update",
"modification_title": "AI Foundryポータルの名称を更新"
}
Explanation
この変更では、ドキュメント内の「AI Foundryポータル」を「Azure AI Foundryポータル」に修正しています。この軽微な更新は、ユーザーがAzure OpenAIサービスを使用する際の作業環境をより明確にし、一貫した用語を提供することを目的としています。具体的には、プロジェクトなしでの操作や、プロジェクト内での操作に関する説明文が更新されており、ユーザーがどのようにAzure AI Foundryポータルを利用し、プロジェクトを管理するかが明示されています。この更新により、より正確で利用しやすい情報が提供され、ユーザーエクスペリエンスの向上に寄与しています。
articles/ai-studio/breadcrumb/toc.yml
Diff
@@ -2,6 +2,6 @@
tocHref: /azure/
topicHref: /azure/index
items:
- - name: AI Foundry
+ - name: Azure AI Foundry
tocHref: /azure/ai-studio/
topicHref: /azure/ai-studio/index
Summary
{
"modification_type": "minor update",
"modification_title": "AI Foundryの名称を更新"
}
Explanation
この変更は、toc.yml
ファイル内の「AI Foundry」という名称を「Azure AI Foundry」に修正する軽微な更新です。この修正は、目次やナビゲーションの一貫性を保ち、ユーザーがAzure関連のリソースを正確に理解できるようにすることを目的としています。具体的には、tocHref
やtopicHref
とともに、新しい名称が反映されており、より正確な情報提供に役立っています。この更新により、ユーザーがAzureのAIサービスにアクセスする際の混乱を軽減し、よりスムーズなナビゲーション体験が可能になります。
articles/ai-studio/concepts/ai-resources.md
Diff
@@ -1,7 +1,7 @@
---
title: Manage, collaborate, and organize with hubs
titleSuffix: Azure AI Foundry
-description: This article introduces concepts about Azure AI Foundry hubs for your AI Foundry projects.
+description: This article introduces concepts about Azure AI Foundry hubs for your Azure AI Foundry projects.
manager: scottpolly
ms.service: azure-ai-studio
ms.custom:
@@ -18,7 +18,7 @@ author: Blackmist
# Manage, collaborate, and organize with hubs
-Hubs are the primary top-level Azure resource for AI Foundry and provide a central way for a team to govern security, connectivity, and computing resources across playgrounds and projects. Once a hub is created, developers can create projects from it and access shared company resources without needing an IT administrator's repeated help.
+Hubs are the primary top-level Azure resource for Azure AI Foundry and provide a central way for a team to govern security, connectivity, and computing resources across playgrounds and projects. Once a hub is created, developers can create projects from it and access shared company resources without needing an IT administrator's repeated help.
Project workspaces that are created using a hub inherit the same security settings and shared resource access. Teams can create project workspaces as needed to organize their work, isolate data, and/or restrict access.
@@ -36,26 +36,26 @@ Get started by [creating your first hub in Azure AI Foundry portal](../how-to/cr
Often, projects in a business domain require access to the same company resources such as vector indices, model endpoints, or repos. As a team lead, you can preconfigure connectivity with these resources within a hub, so developers can access them from any new project workspace without delay on IT.
-[Connections](connections.md) let you access objects in AI Foundry portal that are managed outside of your hub. For example, uploaded data on an Azure storage account, or model deployments on an existing Azure OpenAI resource. A connection can be shared with every project or made accessible to one specific project. Connections can be configured with key-based access or Microsoft Entra ID to authorize access to users on the connected resource. Plus, as an administrator, you can track, audit, and manage connections across projects using your hub.
+[Connections](connections.md) let you access objects in Azure AI Foundry portal that are managed outside of your hub. For example, uploaded data on an Azure storage account, or model deployments on an existing Azure OpenAI resource. A connection can be shared with every project or made accessible to one specific project. Connections can be configured with key-based access or Microsoft Entra ID to authorize access to users on the connected resource. Plus, as an administrator, you can track, audit, and manage connections across projects using your hub.
## Shared Azure resources and configurations
Various management concepts are available on hubs to support team leads and admins to centrally manage a team's environment.
* **Security configuration** including public network access, [virtual networking](#virtual-networking), customer-managed key encryption, and privileged access to whom can create projects for customization. Security settings configured on the hub automatically pass down to each project. A managed virtual network is shared between all projects that share the same hub.
* **Connections** are named and authenticated references to Azure and non-Azure resources like data storage providers. Use a connection as a means for making an external resource available to a group of developers without having to expose its stored credential to an individual.
-* **Compute and quota allocation** is managed as shared capacity for all projects in AI Foundry portal that share the same hub. This quota includes compute instance as managed cloud-based workstation for an individual. The same user can use a compute instance across projects.
+* **Compute and quota allocation** is managed as shared capacity for all projects in Azure AI Foundry portal that share the same hub. This quota includes compute instance as managed cloud-based workstation for an individual. The same user can use a compute instance across projects.
* **AI services access keys** to endpoints for prebuilt AI models are managed on the hub scope. Use these endpoints to access foundation models from Azure OpenAI, Speech, Vision, and Content Safety with one [API key](#azure-ai-services-api-access-keys)
* **Policy** enforced in Azure on the hub scope applies to all projects managed under it.
-* **Dependent Azure resources** are set up once per hub and associated projects and used to store artifacts you generate while working in AI Foundry portal such as logs or when uploading data. For more information, see [Azure AI dependencies](#azure-ai-dependencies).
+* **Dependent Azure resources** are set up once per hub and associated projects and used to store artifacts you generate while working in Azure AI Foundry portal such as logs or when uploading data. For more information, see [Azure AI dependencies](#azure-ai-dependencies).
## Organize work in projects for customization
-A hub provides the hosting environment for [projects](../how-to/create-projects.md) in AI Foundry portal. A project is an organizational container that has tools for AI customization and orchestration. It lets you organize your work, save state across different tools like prompt flow, and collaborate with others. For example, you can share uploaded files and connections to data sources.
+A hub provides the hosting environment for [projects](../how-to/create-projects.md) in Azure AI Foundry portal. A project is an organizational container that has tools for AI customization and orchestration. It lets you organize your work, save state across different tools like prompt flow, and collaborate with others. For example, you can share uploaded files and connections to data sources.
Multiple projects can use a hub, and multiple users can use a project. A project also helps you keep track of billing, and manage access and provides data isolation. Every project uses dedicated storage containers to let you upload files and share it with only other project members when using the 'data' experiences.
-Projects let you create and group reusable components that can be used across tools in AI Foundry portal:
+Projects let you create and group reusable components that can be used across tools in Azure AI Foundry portal:
| Asset | Description |
| --- | --- |
@@ -72,11 +72,11 @@ Projects also have specific settings that only hold for that project:
| Prompt flow runtime | Prompt flow is a feature that can be used to generate, customize, or run a flow. To use prompt flow, you need to create a runtime on top of a compute instance. |
> [!NOTE]
-> In AI Foundry portal you can also manage language and notification settings that apply to all projects that you can access regardless of the hub or project.
+> In Azure AI Foundry portal you can also manage language and notification settings that apply to all projects that you can access regardless of the hub or project.
## Azure AI services API access keys
-The hub allows you to set up connections to existing Azure OpenAI or Azure AI Services resource types, which can be used to host model deployments. You can access these model deployments from connected resources in AI Foundry portal. Keys to connected resources can be listed from the AI Foundry portal or Azure portal. For more information, see [Find Azure AI Foundry resources in the Azure portal](#find-azure-ai-foundry-resources-in-the-azure-portal).
+The hub allows you to set up connections to existing Azure OpenAI or Azure AI Services resource types, which can be used to host model deployments. You can access these model deployments from connected resources in Azure AI Foundry portal. Keys to connected resources can be listed from the Azure AI Foundry portal or Azure portal. For more information, see [Find Azure AI Foundry resources in the Azure portal](#find-azure-ai-foundry-resources-in-the-azure-portal).
### Virtual networking
@@ -97,11 +97,11 @@ Connections can be set up as shared with all projects in the same hub, or create
## Azure AI dependencies
-Azure AI Foundry layers on top of existing Azure services including Azure AI and Azure Machine Learning services. While it might not be visible on the display names in Azure portal, AI Foundry, or when using the SDK or CLI, some of these architectural details become apparent when you work with the Azure REST APIs, use Azure cost reporting, or use infrastructure-as-code templates such as Azure Bicep or Azure Resource Manager. From an Azure Resource Provider perspective, Azure AI Foundry resource types map to the following resource provider kinds:
+Azure AI Foundry layers on top of existing Azure services including Azure AI and Azure Machine Learning services. While it might not be visible on the display names in Azure portal, Azure AI Foundry, or when using the SDK or CLI, some of these architectural details become apparent when you work with the Azure REST APIs, use Azure cost reporting, or use infrastructure-as-code templates such as Azure Bicep or Azure Resource Manager. From an Azure Resource Provider perspective, Azure AI Foundry resource types map to the following resource provider kinds:
[!INCLUDE [Resource provider kinds](../includes/resource-provider-kinds.md)]
-When you create a new hub, a set of dependent Azure resources are required to store data that you upload or get generated when working in AI Foundry portal. If not provided by you, and required, these resources are automatically created.
+When you create a new hub, a set of dependent Azure resources are required to store data that you upload or get generated when working in Azure AI Foundry portal. If not provided by you, and required, these resources are automatically created.
[!INCLUDE [Dependent Azure resources](../includes/dependent-resources.md)]
@@ -124,7 +124,7 @@ In the Azure portal, you can find resources that correspond to your project in A
1. In [Azure AI Foundry](https://ai.azure.com), go to a project and select **Management center** to view your project resources.
1. From the management center, select the overview for either your hub or project and then select the link to **Manage in Azure portal**.
- :::image type="content" source="../media/concepts/azureai-project-view-ai-studio.png" alt-text="Screenshot of the AI Foundry project overview page with links to the Azure portal." lightbox="../media/concepts/azureai-project-view-ai-studio.png":::
+ :::image type="content" source="../media/concepts/azureai-project-view-ai-studio.png" alt-text="Screenshot of the Azure AI Foundry project overview page with links to the Azure portal." lightbox="../media/concepts/azureai-project-view-ai-studio.png":::
## Next steps
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryに関する用語を統一"
}
Explanation
この変更では、ai-resources.md
ファイル内の「AI Foundry」という表現を、「Azure AI Foundry」に統一する軽微な更新が行われました。これにより、ドキュメント全体を通じて一貫したブランド名が使用され、ユーザーがサービスをより明確に認識できるようになっています。更新内容には、概要説明や個別セクション内のテキストが含まれ、指定された文脈での用語の整合性が強化されています。具体的には、プロジェクトの管理やコネクションの設定、ハブの使用方法について説明する際に、「Azure AI Foundry」という正式名称が使用され、よりプロフェッショナルかつ信頼性の高い印象を与えることを目的としています。この修正により、利用者がサービスに関する情報を容易に理解できるようになることが期待されます。
articles/ai-studio/concepts/architecture.md
Diff
@@ -16,41 +16,41 @@ author: Blackmist
# Azure AI Foundry architecture
-AI Foundry provides a unified experience for AI developers and data scientists to build, evaluate, and deploy AI models through a web portal, SDK, or CLI. AI Foundry is built on capabilities and services provided by other Azure services.
+Azure AI Foundry provides a unified experience for AI developers and data scientists to build, evaluate, and deploy AI models through a web portal, SDK, or CLI. Azure AI Foundry is built on capabilities and services provided by other Azure services.
[!INCLUDE [new-name](../includes/new-name.md)]
:::image type="content" source="../media/concepts/ai-studio-architecture.png" alt-text="Diagram of the high-level architecture of Azure AI Foundry." lightbox="../media/concepts/ai-studio-architecture.png":::
-At the top level, AI Foundry provides access to the following resources:
+At the top level, Azure AI Foundry provides access to the following resources:
-<!-- The top level AI Foundry resources (hub and project) are based on Azure Machine Learning. Connected resources, such as Azure OpenAI, Azure AI services, and Azure AI Search, are used by the hub and project in reference, but follow their own resource management lifecycle. -->
+<!-- The top level Azure AI Foundry resources (hub and project) are based on Azure Machine Learning. Connected resources, such as Azure OpenAI, Azure AI services, and Azure AI Search, are used by the hub and project in reference, but follow their own resource management lifecycle. -->
- **Azure OpenAI**: Provides access to the latest Open AI models. You can create secure deployments, try playgrounds, fine tune models, content filters, and batch jobs. The Azure OpenAI resource provider is `Microsoft.CognitiveServices/account` and the kind of resource is `OpenAI`. You can also connect to Azure OpenAI by using a kind of `AIServices`, which also includes other [Azure AI services](/azure/ai-services/what-are-ai-services).
When using Azure AI Foundry portal, you can directly work with Azure OpenAI without an Azure Studio project or you can use Azure OpenAI through a project.
For more information, visit [Azure OpenAI in Azure AI Foundry portal](../azure-openai-in-ai-studio.md).
-- **Management center**: The management center streamlines governance and management of AI Foundry resources such as hubs, projects, connected resources, and deployments.
+- **Management center**: The management center streamlines governance and management of Azure AI Foundry resources such as hubs, projects, connected resources, and deployments.
For more information, visit [Management center](management-center.md).
-- **AI Foundry hub**: The hub is the top-level resource in AI Foundry portal, and is based on the Azure Machine Learning service. The Azure resource provider for a hub is `Microsoft.MachineLearningServices/workspaces`, and the kind of resource is `Hub`. It provides the following features:
+- **Azure AI Foundry hub**: The hub is the top-level resource in Azure AI Foundry portal, and is based on the Azure Machine Learning service. The Azure resource provider for a hub is `Microsoft.MachineLearningServices/workspaces`, and the kind of resource is `Hub`. It provides the following features:
- Security configuration including a managed network that spans projects and model endpoints.
- Compute resources for interactive development, fine-tuning, open source, and serverless model deployments.
- Connections to other Azure services such as Azure OpenAI, Azure AI services, and Azure AI Search. Hub-scoped connections are shared with projects created from the hub.
- Project management. A hub can have multiple child projects.
- An associated Azure storage account for data upload and artifact storage.
For more information, visit [Hubs and projects overview](ai-resources.md).
-- **AI Foundry project**: A project is a child resource of the hub. The Azure resource provider for a project is `Microsoft.MachineLearningServices/workspaces`, and the kind of resource is `Project`. The project provides the following features:
+- **Azure AI Foundry project**: A project is a child resource of the hub. The Azure resource provider for a project is `Microsoft.MachineLearningServices/workspaces`, and the kind of resource is `Project`. The project provides the following features:
- Access to development tools for building and customizing AI applications.
- Reusable components including datasets, models, and indexes.
- An isolated container to upload data to (within the storage inherited from the hub).
- Project-scoped connections. For example, project members might need private access to data stored in an Azure Storage account without giving that same access to other projects.
- Open source model deployments from catalog and fine-tuned model endpoints.
- :::image type="content" source="../media/concepts/resource-provider-connected-resources.svg" alt-text="Diagram of the relationship between AI Foundry resources." :::
+ :::image type="content" source="../media/concepts/resource-provider-connected-resources.svg" alt-text="Diagram of the relationship between Azure AI Foundry resources." :::
For more information, visit [Hubs and projects overview](ai-resources.md).
@@ -67,7 +67,7 @@ Azure AI Foundry is built on the Azure Machine Learning resource provider, and t
When you create a new hub, a set of dependent Azure resources are required to store data, get access to models, and provide compute resources for AI customization. The following table lists the dependent Azure resources and their resource providers:
> [!TIP]
-> If you don't provide a dependent resource when creating a hub, and it's a required dependency, AI Foundry creates the resource for you.
+> If you don't provide a dependent resource when creating a hub, and it's a required dependency, Azure AI Foundry creates the resource for you.
[!INCLUDE [Dependent Azure resources](../includes/dependent-resources.md)]
@@ -94,9 +94,9 @@ Hubs provide a central way for a team to govern security, connectivity, and comp
Often, projects in a business domain require access to the same company resources such as vector indices, model endpoints, or repos. As a team lead, you can preconfigure connectivity with these resources within a hub, so developers can access them from any new project workspace without delay on IT.
-[Connections](connections.md) let you access objects in AI Foundry that are managed outside of your hub. For example, uploaded data on an Azure storage account, or model deployments on an existing Azure OpenAI resource. A connection can be shared with every project or made accessible to one specific project. Connections can be configured to use key-based access or Microsoft Entra ID passthrough to authorize access to users on the connected resource. As an administrator, you can track, audit, and manage connections across the organization from a single view in AI Foundry.
+[Connections](connections.md) let you access objects in Azure AI Foundry that are managed outside of your hub. For example, uploaded data on an Azure storage account, or model deployments on an existing Azure OpenAI resource. A connection can be shared with every project or made accessible to one specific project. Connections can be configured to use key-based access or Microsoft Entra ID passthrough to authorize access to users on the connected resource. As an administrator, you can track, audit, and manage connections across the organization from a single view in Azure AI Foundry.
-:::image type="content" source="../media/concepts/connected-resources-spog.png" alt-text="Screenshot of AI Foundry showing an audit view of all connected resources across a hub and its projects." :::
+:::image type="content" source="../media/concepts/connected-resources-spog.png" alt-text="Screenshot of Azure AI Foundry showing an audit view of all connected resources across a hub and its projects." :::
### Organize for your team's needs
@@ -108,7 +108,7 @@ If you require isolation between dev, test, and production as part of your LLMOp
Azure AI services including Azure OpenAI provide control plane endpoints for operations such as listing model deployments. These endpoints are secured using a separate Azure role-based access control (RBAC) configuration than the one used for a hub.
-To reduce the complexity of Azure RBAC management, AI Foundry provides a *control plane proxy* that allows you to perform operations on connected Azure AI services and Azure OpenAI resources. Performing operations on these resources through the control plane proxy only requires Azure RBAC permissions on the hub. The Azure AI Foundry service then performs the call to the Azure AI services or Azure OpenAI control plane endpoint on your behalf.
+To reduce the complexity of Azure RBAC management, Azure AI Foundry provides a *control plane proxy* that allows you to perform operations on connected Azure AI services and Azure OpenAI resources. Performing operations on these resources through the control plane proxy only requires Azure RBAC permissions on the hub. The Azure AI Foundry service then performs the call to the Azure AI services or Azure OpenAI control plane endpoint on your behalf.
For more information, see [Role-based access control in Azure AI Foundry portal](rbac-ai-studio.md).
@@ -178,6 +178,6 @@ For more information on price and quota, use the following articles:
Create a hub using one of the following methods:
-- [Azure AI Foundry portal](../how-to/create-azure-ai-resource.md#create-a-hub-in-ai-foundry-portal): Create a hub for getting started.
+- [Azure AI Foundry portal](../how-to/create-azure-ai-resource.md#create-a-hub-in-azure-ai-foundry-portal): Create a hub for getting started.
- [Azure portal](../how-to/create-secure-ai-hub.md): Create a hub with your own networking.
- [Bicep template](../how-to/create-azure-ai-hub-template.md).
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryに関連する用語の統一"
}
Explanation
この変更は、architecture.md
ファイル内において、用語を「AI Foundry」から「Azure AI Foundry」に統一する軽微な更新です。この修正は、文中のあらゆる箇所で一貫したサービス名が使用されるようにし、読者が内容を正確に把握できるようにしています。例えば、文章の最初やリソースの説明部分で、Azure AI Foundryの名称が明確に記載されています。
また、リソースや機能を説明するセクションにおいても、Azure AI Foundryとその管理センター、ハブおよびプロジェクトについての記述が整えられています。これにより、文書を通じて得られる情報の整合性が高まり、ユーザーがサービスの構成や機能を理解しやすくなっています。この変更が行われることにより、技術文書の明確さが向上し、利用者が情報を効果的に消化できるようになることが期待されます。
articles/ai-studio/concepts/concept-model-distillation.md
Diff
@@ -1,5 +1,5 @@
---
-title: Distillation in AI Foundry portal (preview)
+title: Distillation in Azure AI Foundry portal (preview)
titleSuffix: Azure AI Foundry
description: Learn how to do distillation in Azure AI Foundry portal.
manager: scottpolly
@@ -33,7 +33,7 @@ The main steps in knowledge distillation are:
## Sample notebook
-Distillation in AI Foundry portal is currently only available through a notebook experience. You can use the [sample notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/foundation-models/system/distillation) to see how to perform distillation. Model distillation is available for Microsoft models and a selection of OSS (open-source software) models available in the model catalog. In this sample notebook, the teacher model uses the Meta Llama 3.1 405B instruction model, and the student model uses the Meta Llama 3.1 8B instruction model.
+Distillation in Azure AI Foundry portal is currently only available through a notebook experience. You can use the [sample notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/foundation-models/system/distillation) to see how to perform distillation. Model distillation is available for Microsoft models and a selection of OSS (open-source software) models available in the model catalog. In this sample notebook, the teacher model uses the Meta Llama 3.1 405B instruction model, and the student model uses the Meta Llama 3.1 8B instruction model.
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の修正"
}
Explanation
この変更では、concept-model-distillation.md
ファイル内のタイトルおよび関連するテキストにおいて、「AI Foundry」という用語を「Azure AI Foundry」に統一する軽微な更新が行われました。具体的には、タイトルと説明文の中で、正確なサービス名が使用されることで、読み手に対するサービスの認識が向上します。
例えば、タイトルが「Distillation in AI Foundry portal (preview)」から「Distillation in Azure AI Foundry portal (preview)」に変更され、文章の流れ全体で「Azure AI Foundry」が適切に反映されています。これにより、利用者は対象サービスを明確に理解でき、より娯楽的かつ正確に情報を捉えることができるようになります。この修正はドキュメント内の用語の一貫性を高め、読者にとっての利便性を向上させることを目的としています。
articles/ai-studio/concepts/concept-synthetic-data.md
Diff
@@ -1,5 +1,5 @@
---
-title: Synthetic data generation in AI Foundry portal
+title: Synthetic data generation in Azure AI Foundry portal
titleSuffix: Azure AI Foundry
description: Learn how to generate a synthetic dataset in Azure AI Foundry portal.
manager: scottpolly
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関するタイトル修正"
}
Explanation
この変更は、concept-synthetic-data.md
ファイル内のタイトルに対する軽微な更新です。具体的には、タイトルが「Synthetic data generation in AI Foundry portal」から「Synthetic data generation in Azure AI Foundry portal」に修正され、サービス名の一貫性が保たれるようになりました。
この修正により、文書全体の中で「Azure AI Foundry」が明確に表現され、読み手に対してより正確な情報を提供します。同様に、説明文も「Azure AI Foundry portal」に言及しており、読者が対象サービスを理解しやすくなっています。総じて、この更新は、用語の正確性と一貫性を向上させ、利用者の理解を助けることを目的としています。
articles/ai-studio/concepts/connections.md
Diff
@@ -17,7 +17,7 @@ author: sdgilley
# Connections in Azure AI Foundry portal
-Connections in Azure AI Foundry portal are a way to authenticate and consume both Microsoft and non-Microsoft resources within your AI Foundry projects. For example, connections can be used for prompt flow, training data, and deployments. [Connections can be created](../how-to/connections-add.md) exclusively for one project or shared with all projects in the same hub.
+Connections in Azure AI Foundry portal are a way to authenticate and consume both Microsoft and non-Microsoft resources within your Azure AI Foundry projects. For example, connections can be used for prompt flow, training data, and deployments. [Connections can be created](../how-to/connections-add.md) exclusively for one project or shared with all projects in the same hub.
## Connections to Azure AI services
@@ -46,7 +46,7 @@ A data connection offers these benefits:
- A common, easy-to-use API that interacts with different storage types including Microsoft OneLake, Azure Blob, and Azure Data Lake Gen2.
- Easier discovery of useful connections in team operations.
-- For credential-based access (service principal/SAS/key), AI Foundry connection secures credential information. This way, you won't need to place that information in your scripts.
+- For credential-based access (service principal/SAS/key), Azure AI Foundry connection secures credential information. This way, you won't need to place that information in your scripts.
When you create a connection with an existing Azure storage account, you can choose between two different authentication methods:
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する表現の修正"
}
Explanation
この変更では、connections.md
ファイル内の表現に関する軽微な更新が行われました。具体的には、「AI Foundry」という用語を「Azure AI Foundry」に修正することで、サービス名称の正確性が向上しました。
変更内容の一部として、文章中で「Azure AI Foundry projects」との表現に統一されることで、読み手に対する情報をより明確に伝えることができます。また、関連するセクションでも同様の修正が施されており、資格情報のセキュリティに関する部分でも「Azure AI Foundry connection」と改められています。これらの修正は、用語の一貫性を保つとともに、読みやすさを向上させ、読者に誤解を与えないよう配慮されています。全体として、ドキュメントの品質を高めるための重要なステップといえるでしょう。
articles/ai-studio/concepts/encryption-keys-portal.md
Diff
@@ -39,8 +39,8 @@ The following data is stored on the managed resources.
|Service|What it's used for|Example|
|-----|-----|-----|
|Azure Cosmos DB|Stores metadata for your Azure AI projects and tools|Index names, tags; Flow creation timestamps; deployment tags; evaluation metrics|
-|Azure AI Search|Stores indices that are used to help query your AI Foundry content.|An index based off your model deployment names|
-|Azure Storage Account|Stores instructions for how customization tasks are orchestrated|JSON representation of flows you create in AI Foundry portal|
+|Azure AI Search|Stores indices that are used to help query your Azure AI Foundry content.|An index based off your model deployment names|
+|Azure Storage Account|Stores instructions for how customization tasks are orchestrated|JSON representation of flows you create in Azure AI Foundry portal|
>[!IMPORTANT]
> Azure AI Foundry uses Azure compute that is managed in the Microsoft subscription, for example when you fine-tune models or or build flows. Its disks are encrypted with Microsoft-managed keys. Compute is ephemeral, meaning after a task is completed the virtual machine is deprovisioned, and the OS disk is deleted. Compute instance machines used for 'Code' experiences are persistant. Azure Disk Encryption isn't supported for the OS disk.
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の統一"
}
Explanation
この変更では、encryption-keys-portal.md
ファイル内の用語に関する軽微な更新が行われました。特に、「AI Foundry」という表現が「Azure AI Foundry」に修正されており、サービス名の一貫性と正確性が確保されています。
変更の具体例として、データストレージに関するテーブル内の記述が「AI Foundry」から「Azure AI Foundry」に改められています。この修正により、読者に対してサービスの内容を明確に伝え、混乱を避けることが期待されます。全体として、この修正は文書の品質向上に寄与しており、利用者が正確な情報に基づいて理解を深めるための重要なステップとなります。
articles/ai-studio/concepts/management-center.md
Diff
@@ -24,7 +24,7 @@ You can use the management center to create and configure hubs and projects with
:::image type="content" source="../media/management-center/manage-hub-project.png" alt-text="Screenshot of the all resources, hub, and project sections of the management studio selected." lightbox="../media/management-center/manage-hub-project.png":::
-For more information, see the articles on creating a [hub](../how-to/create-azure-ai-resource.md#create-a-hub-in-ai-foundry-portal) and [project](../how-to/create-projects.md).
+For more information, see the articles on creating a [hub](../how-to/create-azure-ai-resource.md#create-a-hub-in-azure-ai-foundry-portal) and [project](../how-to/create-projects.md).
## Manage resource utilization
@@ -40,7 +40,7 @@ Assign roles, manage users, and ensure that all settings comply with organizatio
:::image type="content" source="../media/management-center/user-management.png" alt-text="Screenshot of the user management section of the management center." lightbox="../media/management-center/user-management.png":::
-For more information, see [Role-based access control](rbac-ai-studio.md#assigning-roles-in-ai-foundry-portal).
+For more information, see [Role-based access control](rbac-ai-studio.md#assigning-roles-in-azure-ai-foundry-portal).
## Related content
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の修正"
}
Explanation
この変更では、management-center.md
ファイル内の特定の用語について軽微な更新が行われています。主に、「AI Foundry」の表現が「Azure AI Foundry」に統一され、整合性が保たれるよう修正されました。
変更内容としては、ハブやプロジェクトの作成に関する案内リンクの説明文と、役割に基づくアクセス制御(RBAC)に関するリンクに対しても同様の表現が用いられています。このような修正は、情報の一貫性を高め、ユーザーがより正確にドキュメントを理解できるようにするための重要な手段です。全体を通じて、文書の明瞭性と品質の向上に寄与していると言えるでしょう。
articles/ai-studio/concepts/model-lifecycle-retirement.md
Diff
@@ -72,4 +72,4 @@ Models labeled _Retired_ are no longer available for use. You can't create new d
## Related content
- [Model catalog and collections in Azure AI Foundry portal](../how-to/model-catalog-overview.md)
-- [Data, privacy, and security for use of models through the model catalog in AI Foundry portal](../how-to/concept-data-privacy.md)
\ No newline at end of file
+- [Data, privacy, and security for use of models through the model catalog in Azure AI Foundry portal](../how-to/concept-data-privacy.md)
\ No newline at end of file
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の整合性向上"
}
Explanation
この変更では、model-lifecycle-retirement.md
ファイル内のリンクに関する軽微な修正が行われました。具体的には、AI Foundryポータルに関連するコンテンツのリンク記述において、「AI Foundry」の表現が一貫して使用されるように修正されています。
修正された部分は、モデルカタログの使用に関するデータ、プライバシー、およびセキュリティに関連する情報へのリンク部分です。この変更は、情報の整合性を高め、ユーザーが関連するコンテンツにアクセスする際の混乱を避けることを目的としています。全体として、この更新はドキュメントの品質向上に寄与する重要なステップです。
articles/ai-studio/concepts/rbac-ai-studio.md
Diff
@@ -22,17 +22,17 @@ In this article, you learn how to manage access (authorization) to an Azure AI F
> [!WARNING]
> Applying some roles might limit UI functionality in Azure AI Foundry portal for other users. For example, if a user's role does not have the ability to create a compute instance, the option to create a compute instance will not be available in studio. This behavior is expected, and prevents the user from attempting operations that would return an access denied error.
-## AI Foundry hub vs project
+## Azure AI Foundry hub vs project
In the Azure AI Foundry portal, there are two levels of access: the hub and the project. The hub is home to the infrastructure (including virtual network setup, customer-managed keys, managed identities, and policies) and where you configure your Azure AI services. Hub access can allow you to modify the infrastructure, create new hubs, and create projects. Projects are a subset of the hub that act as workspaces that allow you to build and deploy AI systems. Within a project you can develop flows, deploy models, and manage project assets. Project access lets you develop AI end-to-end while taking advantage of the infrastructure setup on the hub.
-:::image type="content" source="../media/concepts/resource-provider-connected-resources.svg" alt-text="Diagram of the relationship between AI Foundry resources.":::
+:::image type="content" source="../media/concepts/resource-provider-connected-resources.svg" alt-text="Diagram of the relationship between Azure AI Foundry resources.":::
One of the key benefits of the hub and project relationship is that developers can create their own projects that inherit the hub security settings. You might also have developers who are contributors to a project, and can't create new projects.
## Default roles for the hub
-The AI Foundry hub has built-in roles that are available by default.
+The Azure AI Foundry hub has built-in roles that are available by default.
Here's a table of the built-in roles and their permissions for the hub:
@@ -92,7 +92,7 @@ If the built-in Azure AI Developer role doesn't meet your needs, you can create
## Default roles for projects
-Projects in AI Foundry portal have built-in roles that are available by default.
+Projects in Azure AI Foundry portal have built-in roles that are available by default.
Here's a table of the built-in roles and their permissions for the project:
@@ -104,7 +104,7 @@ Here's a table of the built-in roles and their permissions for the project:
| Azure AI Inference Deployment Operator | Perform all actions required to create a resource deployment within a resource group. |
| Reader | Read only access to the project. |
-When a user is granted access to a project (for example, through the AI Foundry portal permission management), two more roles are automatically assigned to the user. The first role is Reader on the hub. The second role is the Inference Deployment Operator role, which allows the user to create deployments on the resource group that the project is in. This role is composed of these two permissions: ```"Microsoft.Authorization/*/read"``` and ```"Microsoft.Resources/deployments/*"```.
+When a user is granted access to a project (for example, through the Azure AI Foundry portal permission management), two more roles are automatically assigned to the user. The first role is Reader on the hub. The second role is the Inference Deployment Operator role, which allows the user to create deployments on the resource group that the project is in. This role is composed of these two permissions: ```"Microsoft.Authorization/*/read"``` and ```"Microsoft.Resources/deployments/*"```.
In order to complete end-to-end AI development and deployment, users only need these two autoassigned roles and either the Contributor or Azure AI Developer role on a project.
@@ -229,26 +229,26 @@ For example, if you're trying to consume a new Blob storage, you need to ensure
## Manage access with roles
-If you're an owner of a hub, you can add and remove roles for AI Foundry. Go to the **Home** page in [Azure AI Foundry](https://ai.azure.com) and select your hub. Then select **Users** to add and remove users for the hub. You can also manage permissions from the Azure portal under **Access Control (IAM)** or through the Azure CLI. For example, use the [Azure CLI](/cli/azure/) to assign the Azure AI Developer role to "joe@contoso.com" for resource group "this-rg" with the following command:
+If you're an owner of a hub, you can add and remove roles for Azure AI Foundry. Go to the **Home** page in [Azure AI Foundry](https://ai.azure.com) and select your hub. Then select **Users** to add and remove users for the hub. You can also manage permissions from the Azure portal under **Access Control (IAM)** or through the Azure CLI. For example, use the [Azure CLI](/cli/azure/) to assign the Azure AI Developer role to "joe@contoso.com" for resource group "this-rg" with the following command:
```azurecli-interactive
az role assignment create --role "Azure AI Developer" --assignee "joe@contoso.com" --resource-group this-rg
```
## Create custom roles
-If the built-in roles are insufficient, you can create custom roles. Custom roles might have the read, write, delete, and compute resource permissions in that AI Foundry. You can make the role available at a specific project level, a specific resource group level, or a specific subscription level.
+If the built-in roles are insufficient, you can create custom roles. Custom roles might have the read, write, delete, and compute resource permissions in that Azure AI Foundry. You can make the role available at a specific project level, a specific resource group level, or a specific subscription level.
> [!NOTE]
> You must be an owner of the resource at that level to create custom roles within that resource.
-The following JSON example defines a custom AI Foundry developer role at the subscription level:
+The following JSON example defines a custom Azure AI Foundry developer role at the subscription level:
```json
{
"properties": {
- "roleName": "AI Foundry Developer",
- "description": "Custom role for AI Foundry. At subscription level",
+ "roleName": "Azure AI Foundry Developer",
+ "description": "Custom role for Azure AI Foundry. At subscription level",
"assignableScopes": [
"/subscriptions/<your-subscription-id>"
],
@@ -299,7 +299,7 @@ For steps on creating a custom role, use one of the following articles:
For more information on creating custom roles in general, visit the [Azure custom roles](/azure/role-based-access-control/custom-roles) article.
-## Assigning roles in AI Foundry portal
+## Assigning roles in Azure AI Foundry portal
You can add users and assign roles directly from Azure AI Foundry at either the hub or project level. In the [management center](management-center.md), select **Users** in either the hub or project section, then select **New user** to add a user.
@@ -316,7 +316,7 @@ You are then prompted to enter the user information and select a built-in role.
When configuring a hub to use a customer-managed key (CMK), an Azure Key Vault is used to store the key. The user or service principal used to create the workspace must have owner or contributor access to the key vault.
-If your AI Foundry hub is configured with a **user-assigned managed identity**, the identity must be granted the following roles. These roles allow the managed identity to create the Azure Storage, Azure Cosmos DB, and Azure Search resources used when using a customer-managed key:
+If your Azure AI Foundry hub is configured with a **user-assigned managed identity**, the identity must be granted the following roles. These roles allow the managed identity to create the Azure Storage, Azure Cosmos DB, and Azure Search resources used when using a customer-managed key:
- `Microsoft.Storage/storageAccounts/write`
- `Microsoft.Search/searchServices/write`
@@ -368,8 +368,8 @@ An Azure Container Registry instance is an optional dependency for Azure AI Foun
| Authentication method | Public network access </br>disabled | Azure Container Registry</br>Public network access enabled |
| ---- | :----: | :----: |
| Admin user | ✓ | ✓ |
-| AI Foundry hub system-assigned managed identity | ✓ | ✓ |
-| AI Foundry hub user-assigned managed identity </br>with the **ACRPull** role assigned to the identity | | ✓ |
+| Azure AI Foundry hub system-assigned managed identity | ✓ | ✓ |
+| Azure AI Foundry hub user-assigned managed identity </br>with the **ACRPull** role assigned to the identity | | ✓ |
A system-assigned managed identity is automatically assigned to the correct roles when the hub is created. If you're using a user-assigned managed identity, you must assign the **ACRPull** role to the identity.
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundry用語の整合性向上"
}
Explanation
この変更では、rbac-ai-studio.md
ファイルにおいて、Azure AI Foundryに関する用語が一貫して使用されるように修正されています。特に、「AI Foundry」から「Azure AI Foundry」という表現に言及が変更されており、今後のドキュメントでの用語の一貫性が保たれています。
この変更は、いくつかのセクションで確認でき、新たに追加された内容として、役割管理やプロジェクトとハブの定義が明確化されています。例として、役割の説明やどのように役割を管理及び作成するかについて、具体的な手順が示されています。
この更新により、ユーザーがより容易にAzure AI Foundryの機能を理解し、有効に活用できるようになります。また、ドキュメントの可読性と信頼性が向上することが期待されています。
articles/ai-studio/concepts/trace.md
Diff
@@ -65,9 +65,9 @@ Trace visualization refers to the graphical representation of trace data. Azure
## Enable tracing
-In order to enable tracing, you need to add an Application Insights resource to your Azure AI Foundry project. To add an Application Insights resource, navigate to the **Tracing** tab in the [AI Foundry portal](https://ai.azure.com/), and create a new resource if you don't already have one.
+In order to enable tracing, you need to add an Application Insights resource to your Azure AI Foundry project. To add an Application Insights resource, navigate to the **Tracing** tab in the [Azure AI Foundry portal](https://ai.azure.com/), and create a new resource if you don't already have one.
-:::image type="content" source="../../ai-services/agents/media/ai-foundry-tracing.png" alt-text="A screenshot of the tracing screen in the AI Foundry portal." lightbox="../../ai-services/agents/media/ai-foundry-tracing.png":::
+:::image type="content" source="../../ai-services/agents/media/ai-foundry-tracing.png" alt-text="A screenshot of the tracing screen in the Azure AI Foundry portal." lightbox="../../ai-services/agents/media/ai-foundry-tracing.png":::
## Conclusion
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルの用語の一貫性向上"
}
Explanation
この変更では、trace.md
ファイル内での用語の一貫性が向上されました。具体的には、「AI Foundryポータル」という表現が「Azure AI Foundryポータル」に統一され、Azure AI Foundryという名称が明確に表示されています。
修正内容は、トレースの有効化に関するセクションと、トレース画面のスクリーンショットに関する部分に見られます。この更新は、読者がAzure AI Foundryの概念をより正確に理解できるようにし、ドキュメントの整合性を高める役割を果たしています。
全体として、これらの変更はユーザーにとっての使いやすさを向上させるものであり、ドキュメントの品質向上に寄与する重要な更新です。
articles/ai-studio/concepts/vulnerability-management.md
Diff
@@ -58,7 +58,7 @@ Although Microsoft patches base images with each release, whether you use the la
By default, dependencies are layered on top of base images when you're building an image. After you install more dependencies on top of the Microsoft-provided images, vulnerability management becomes your responsibility.
-Associated with your AI Foundry hub is an Azure Container Registry instance that functions as a cache for container images. Any image that materializes is pushed to the container registry. The workspace uses it when deployment is triggered for the corresponding environment.
+Associated with your Azure AI Foundry hub is an Azure Container Registry instance that functions as a cache for container images. Any image that materializes is pushed to the container registry. The workspace uses it when deployment is triggered for the corresponding environment.
The hub doesn't delete any image from your container registry. You're responsible for evaluating the need for an image over time. To monitor and maintain environment hygiene, you can use [Microsoft Defender for Container Registry](/azure/defender-for-cloud/defender-for-container-registries-usage) to help scan your images for vulnerabilities. To automate your processes based on triggers from Microsoft Defender, see [Automate remediation responses](/azure/defender-for-cloud/workflow-automation).
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の統一"
}
Explanation
この変更では、vulnerability-management.md
ファイルにおいて、「AI Foundry」から「Azure AI Foundry」という用語に統一されました。この修正は、Azure AI Foundryポータルに関連付けられたAzure Container Registryの説明部分に見られます。
具体的には、AI Foundryハブに関連するAzure Container Registryの解説において、表現が一貫して「Azure AI Foundry hub」とされ、より明確な表現になっています。この用語の更新により、ドキュメントがより分かりやすくなり、ユーザーがAzure AI Foundryに関連する情報を一貫して理解できるように配慮されています。
全体的に、この変更はドキュメントの品質を向上させ、ユーザーエクスペリエンスの向上に寄与するものです。
articles/ai-studio/how-to/access-on-premises-resources.md
Diff
@@ -18,7 +18,7 @@ To access your non-Azure resources located in a different virtual network or loc
Azure Application Gateway is a load balancer that makes routing decisions based on the URL of an HTTPS request. Azure Machine Learning supports using an application gateway to securely communicate with non-Azure resources. For more on Application Gateway, see [What is Azure Application Gateway](/azure/application-gateway/overview).
-To access on-premises or custom virtual network resources from the managed virtual network, you configure an Application Gateway on your Azure virtual network. The application gateway is used for inbound access to the AI Foundry portal's hub. Once configured, you then create a private endpoint from the Azure AI Foundry hub's managed virtual network to the Application Gateway. With the private endpoint, the full end to end path is secured and not routed through the Internet.
+To access on-premises or custom virtual network resources from the managed virtual network, you configure an Application Gateway on your Azure virtual network. The application gateway is used for inbound access to the Azure AI Foundry portal's hub. Once configured, you then create a private endpoint from the Azure AI Foundry hub's managed virtual network to the Application Gateway. With the private endpoint, the full end to end path is secured and not routed through the Internet.
:::image type="content" source="../media/how-to/network/ai-studio-app-gateway.png" alt-text="Diagram of a managed network using Application Gateway to communicate with on-premises resources." lightbox="../media/how-to/network/ai-studio-app-gateway.png":::
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の統一"
}
Explanation
この変更では、access-on-premises-resources.md
ファイル内で、Azure AI Foundryポータルに関連する用語の統一が行われました。具体的には、「AI Foundryポータル」という表現が「Azure AI Foundryポータル」に更新され、Azureのブランド名が明確に示されています。
修正は、アプリケーションゲートウェイの設定とその役割に関する部分で見られます。この変更により、AI Foundryポータルへのアクセスがより正確に記述され、ユーザーがより明確に理解できるようになっています。
全体として、この更新はドキュメントの整合性を高め、ユーザーの体験を向上させるための重要な一手です。
articles/ai-studio/how-to/benchmark-model-in-catalog.md
Diff
@@ -28,7 +28,7 @@ In this article, you learn to compare benchmarks across models and datasets, usi
## Access model benchmarks through the model catalog
-Azure AI supports model benchmarking for select models that are popular and most frequently used. Follow these steps to use detailed benchmarking results to compare and select models directly from the AI Foundry model catalog:
+Azure AI supports model benchmarking for select models that are popular and most frequently used. Follow these steps to use detailed benchmarking results to compare and select models directly from the Azure AI Foundry model catalog:
[!INCLUDE [open-catalog](../includes/open-catalog.md)]
@@ -61,7 +61,7 @@ When you're in the "Benchmarks" tab for a specific model, you can gather extensi
:::image type="content" source="../media/how-to/model-benchmarks/gpt4o-benchmark-tab-expand.png" alt-text="Screenshot showing benchmarks tab for gpt-4o." lightbox="../media/how-to/model-benchmarks/gpt4o-benchmark-tab-expand.png":::
-By default, AI Foundry displays an average index across various metrics and datasets to provide a high-level overview of model performance.
+By default, Azure AI Foundry displays an average index across various metrics and datasets to provide a high-level overview of model performance.
To access benchmark results for a specific metric and dataset:
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の統一"
}
Explanation
この変更では、benchmark-model-in-catalog.md
ファイルにおいて、「AI Foundry」という用語が「Azure AI Foundry」という表現に修正されています。この更新によって、Azureのブランド名が一貫して使用され、ユーザーがより正確にドキュメントの内容を理解できるようになります。
具体的には、モデルカタログからモデルのベンチマークを比較し選択する手順や、モデルのパフォーマンスに関するインデックスについての記述が含まれています。この用語の変更は、Azure AIに関連する内容の整合性を高めるだけでなく、ユーザーエクスペリエンスの向上にも寄与します。
全体として、この修正はドキュメントの品質と一貫性を向上させる重要なものです。
articles/ai-studio/how-to/concept-data-privacy.md
Diff
@@ -1,5 +1,5 @@
---
-title: Data, privacy, and security for use of models through the model catalog in AI Foundry portal
+title: Data, privacy, and security for use of models through the model catalog in Azure AI Foundry portal
titleSuffix: Azure AI Foundry
description: Get details about how data that customers provide is processed, used, and stored when a user deploys a model from the model catalog.
manager: scottpolly
@@ -12,7 +12,7 @@ ms.author: scottpolly
author: s-polly
#Customer intent: As a data scientist, I want to learn about data privacy and security for use of models in the model catalog.
---
-# Data, privacy, and security for use of models through the model catalog in AI Foundry portal
+# Data, privacy, and security for use of models through the model catalog in Azure AI Foundry portal
[!INCLUDE [feature-preview](../includes/feature-preview.md)]
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルに関する用語の変更"
}
Explanation
この変更では、concept-data-privacy.md
ファイル内のタイトルと見出しが更新され、「AI Foundryポータル」という表現が「Azure AI Foundryポータル」に変更されました。この修正により、Azureのブランド名が一貫して使用され、ユーザーに対する明確さが向上しています。
具体的には、タイトルが「Data, privacy, and security for use of models through the model catalog in AI Foundry portal」から「Data, privacy, and security for use of models through the model catalog in Azure AI Foundry portal」に変更され、文書全体の整合性が改善されています。
この変更は、使用されている用語の正確性を高めるためのものであり、Azureの関連情報を提供する際の表現の統一に貢献しています。全体として、ドキュメントの品質向上を目的とした重要な修正です。
articles/ai-studio/how-to/configure-managed-network.md
Diff
@@ -821,7 +821,7 @@ pytorch.org
Private endpoints are currently supported for the following Azure services:
-* AI Foundry hub
+* Azure AI Foundry hub
* Azure AI Search
* Azure AI services
* Azure API Management
@@ -902,4 +902,4 @@ The hub managed virtual network feature is free. However, you're charged for the
## Related content
-- [Create AI Foundry hub and project using the SDK](./develop/create-hub-project-sdk.md)
+- [Create Azure AI Foundry hub and project using the SDK](./develop/create-hub-project-sdk.md)
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryに関する用語の修正"
}
Explanation
この変更では、configure-managed-network.md
ファイルにおいて、「AI Foundry」という表現が「Azure AI Foundry」に修正されています。この更新により、Azureのブランド名が一貫して使用され、文書の正確性が高まります。
具体的には、プライベートエンドポイントがサポートされているAzureサービスのリストにおいて、「AI Foundry hub」という項目が「Azure AI Foundry hub」に変更され、関連コンテンツのリンクでも同様に修正が行われています。この用語の更新は、ユーザーがAzure AI関連の情報をより正確に理解できるようにするためのもので、ドキュメント全体の整合性の向上に寄与しています。
これにより、Azure AI Foundryのサービスに関する説明が一貫性を持って提供され、ユーザーエクスペリエンスの向上にもつながる重要な修正です。
articles/ai-studio/how-to/configure-private-link.md
Diff
@@ -17,7 +17,7 @@ author: Blackmist
We have two network isolation aspects. One is the network isolation to access an Azure AI Foundry hub. Another is the network isolation of computing resources in your hub and projects such as compute instances, serverless, and managed online endpoints. This article explains the former highlighted in the diagram. You can use private link to establish the private connection to your hub and its default resources. This article is for Azure AI Foundry (hub and projects). For information on Azure AI services, see the [Azure AI services documentation](/azure/ai-services/cognitive-services-virtual-networks).
-:::image type="content" source="../media/how-to/network/azure-ai-network-inbound.svg" alt-text="Diagram of AI Foundry hub network isolation." lightbox="../media/how-to/network/azure-ai-network-inbound.png":::
+:::image type="content" source="../media/how-to/network/azure-ai-network-inbound.svg" alt-text="Diagram of Azure AI Foundry hub network isolation." lightbox="../media/how-to/network/azure-ai-network-inbound.png":::
You get several hub default resources in your resource group. You need to configure following network isolation configurations.
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryハブのネットワーク隔離に関する用語の明確化"
}
Explanation
この変更は、configure-private-link.md
ファイル内における用語の更新に関するもので、メディアの説明テキストが修正されました。具体的には、AI Foundryハブのネットワーク隔離に関する図に関連する説明が「AI Foundry hub network isolation」から「Azure AI Foundry hub network isolation」に変更されており、Azureのブランド認識が強化されています。
この修正は、Azure AI Foundryのサービスに関連する情報を伝える際の正確性を高め、ユーザーに対してより明確なコンテキストを提供します。変更内容は、図の説明に直接関連し、視覚的な情報とテキストの一貫性を持たせることを目的としています。
全体として、この更新は、ドキュメント全体にわたって用語の整合性を向上させ、ユーザーエクスペリエンスを改善するための重要な修正です。
articles/ai-studio/how-to/connections-add.md
Diff
@@ -80,7 +80,7 @@ To create an outbound private endpoint rule to the data source, use the followin
1. Select __Networking__, then __Workspace managed outbound access__.
1. To add an outbound rule, select __Add user-defined outbound rules__. From the __Workspace outbound rules__ sidebar, provide the following information:
- - __Rule name__: A name for the rule. The name must be unique for the AI Foundry hub.
+ - __Rule name__: A name for the rule. The name must be unique for the Azure AI Foundry hub.
- __Destination type__: Private Endpoint.
- __Subscription__: The subscription that contains the Azure resource you want to connect to.
- __Resource type__: `Microsoft.Storage/storageAccounts`. This resource provider is used for Azure Storage, Azure Data Lake Storage Gen2, and Microsoft OneLake.
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryハブに関する用語の修正"
}
Explanation
この変更は、connections-add.md
ファイルにおいて、「AI Foundry hub」が「Azure AI Foundry hub」に修正されており、Azureのブランド名が一貫して使用されるようになっています。具体的には、アウトバウンドプライベートエンドポイントルールを作成する手順の一部において、ルール名に関する説明が更新されています。
この修正により、ユーザーはAI Foundryハブに関連する情報をより正確に理解できるようになります。特に、ルール名が一意である必要があることが強調されている点も重要で、ドキュメント全体の正確性が向上します。
このマイナーな更新は、用語の整合性を向上させ、Azure AI Foundryに関するユーザーエクスペリエンスを改善するための重要なステップです。
articles/ai-studio/how-to/costs-plan-manage.md
Diff
@@ -100,7 +100,7 @@ When you use cost analysis, you view hub costs in graphs and tables for differen
You can get to cost analysis from the [Azure portal](https://portal.azure.com). You can also get to cost analysis from the [Azure AI Foundry](https://ai.azure.com).
> [!IMPORTANT]
-> Your AI Foundry project costs are only a subset of your overall application or solution costs. You need to monitor costs for all Azure resources used in your application or solution. For more information, see [Azure AI Foundry hubs](../concepts/ai-resources.md).
+> Your Azure AI Foundry project costs are only a subset of your overall application or solution costs. You need to monitor costs for all Azure resources used in your application or solution. For more information, see [Azure AI Foundry hubs](../concepts/ai-resources.md).
For the examples in this section, assume that all Azure AI Foundry resources are in the same resource group. But you can have resources in different resource groups. For example, your Azure AI Search resource might be in a different resource group than your project.
Summary
{
"modification_type": "minor update",
"modification_title": "コスト分析における用語の変更"
}
Explanation
この変更は、costs-plan-manage.md
ファイル内の重要な情報における用語の修正に関するもので、「AI Foundryプロジェクトコスト」という表現が「Azure AI Foundryプロジェクトコスト」に変更されています。この修正は、Azureのブランドとドキュメントの一貫性を保つために行われました。
具体的には、コスト分析のセクションにおいて、AI Foundryプロジェクトのコストが全体のアプリケーションまたはソリューションコストの一部であることを強調する重要な警告が含まれています。この変更により、読者は、Azure AI Foundryに関連するコストを他のAzureリソースのコストとともに見積もる重要性をより明確に理解できるようになります。
全体として、このマイナーな更新は用語の一貫性を向上させ、Azure関連の情報を正確かつ明確に伝えるための重要なステップとなります。
articles/ai-studio/how-to/create-azure-ai-resource.md
Diff
@@ -1,7 +1,7 @@
---
title: How to create and manage an Azure AI Foundry hub
titleSuffix: Azure AI Foundry
-description: Learn how to create and manage an Azure AI Foundry hub from the Azure portal or from the AI Foundry portal. Your developers can then create projects from the hub.
+description: Learn how to create and manage an Azure AI Foundry hub from the Azure portal or from the Azure AI Foundry portal. Your developers can then create projects from the hub.
manager: scottpolly
ms.service: azure-ai-studio
ms.custom:
@@ -18,24 +18,24 @@ author: Blackmist
# How to create and manage an Azure AI Foundry hub
-In AI Foundry portal, hubs provide the environment for a team to collaborate and organize work, and help you as a team lead or IT admin centrally set up security settings and govern usage and spend. You can create and manage a hub from the Azure portal or from the AI Foundry portal, and then your developers can create projects from the hub.
+In Azure AI Foundry portal, hubs provide the environment for a team to collaborate and organize work, and help you as a team lead or IT admin centrally set up security settings and govern usage and spend. You can create and manage a hub from the Azure portal or from the Azure AI Foundry portal, and then your developers can create projects from the hub.
-In this article, you learn how to create and manage a hub in AI Foundry portal with the default settings so you can get started quickly. Do you need to customize security or the dependent resources of your hub? Then use [Azure portal](create-secure-ai-hub.md) or [template options](create-azure-ai-hub-template.md).
+In this article, you learn how to create and manage a hub in Azure AI Foundry portal with the default settings so you can get started quickly. Do you need to customize security or the dependent resources of your hub? Then use [Azure portal](create-secure-ai-hub.md) or [template options](create-azure-ai-hub-template.md).
> [!TIP]
-> If you're an individual developer and not an admin, dev lead, or part of a larger effort that requires a hub, you can create a project directly from the AI Foundry portal without creating a hub first. For more information, see [Create a project](create-projects.md).
+> If you're an individual developer and not an admin, dev lead, or part of a larger effort that requires a hub, you can create a project directly from the Azure AI Foundry portal without creating a hub first. For more information, see [Create a project](create-projects.md).
>
> If you're an admin or dev lead and would like to create your Azure AI Foundry hub using a template, see the articles on using [Bicep](create-azure-ai-hub-template.md) or [Terraform](create-hub-terraform.md).
-## Create a hub in AI Foundry portal
+## Create a hub in Azure AI Foundry portal
-To create a new hub, you need either the Owner or Contributor role on the resource group or on an existing hub. If you're unable to create a hub due to permissions, reach out to your administrator. If your organization is using [Azure Policy](/azure/governance/policy/overview), don't create the resource in AI Foundry portal. Create the hub [in the Azure portal](#create-a-secure-hub-in-the-azure-portal) instead.
+To create a new hub, you need either the Owner or Contributor role on the resource group or on an existing hub. If you're unable to create a hub due to permissions, reach out to your administrator. If your organization is using [Azure Policy](/azure/governance/policy/overview), don't create the resource in Azure AI Foundry portal. Create the hub [in the Azure portal](#create-a-secure-hub-in-the-azure-portal) instead.
[!INCLUDE [Create Azure AI Foundry hub](../includes/create-hub.md)]
## Create a secure hub in the Azure portal
-If your organization is using [Azure Policy](/azure/governance/policy/overview), set up a hub that meets your organization's requirements instead of using AI Foundry for resource creation.
+If your organization is using [Azure Policy](/azure/governance/policy/overview), set up a hub that meets your organization's requirements instead of using Azure AI Foundry for resource creation.
1. From the Azure portal, search for `Azure AI Foundry` and create a new hub by selecting **+ New Azure AI hub**
1. Enter your hub name, subscription, resource group, and location details.
@@ -152,7 +152,7 @@ az ml workspace update -n "myexamplehub" -g "{MY_RESOURCE_GROUP}" -a "APPLICATIO
### Choose how credentials are stored
-Select scenarios in AI Foundry portal store credentials on your behalf. For example when you create a connection in AI Foundry portal to access an Azure Storage account with stored account key, access Azure Container Registry with admin password, or when you create a compute instance with enabled SSH keys. No credentials are stored with connections when you choose Microsoft Entra ID identity-based authentication.
+Select scenarios in Azure AI Foundry portal store credentials on your behalf. For example when you create a connection in Azure AI Foundry portal to access an Azure Storage account with stored account key, access Azure Container Registry with admin password, or when you create a compute instance with enabled SSH keys. No credentials are stored with connections when you choose Microsoft Entra ID identity-based authentication.
You can choose where credentials are stored:
Summary
{
"modification_type": "minor update",
"modification_title": "Azure AI Foundryポータルへの用語の統一"
}
Explanation
この変更は、create-azure-ai-resource.md
ファイルにおいて、「AI Foundryポータル」との表現を「Azure AI Foundryポータル」に統一することで、Azureのブランドおよびドキュメントの一貫性を保つために行われました。この修正により、ユーザーはAzure AIに関連するリソースや機能をより明確に理解できるようになります。
具体的には、AI Foundryに関する作業環境としてのハブの作成と管理に関する内容で、ユーザーが安心してリソースを管理できるようにするための手順や注意事項が述べられています。また、個々の開発者がハブを作成することなくプロジェクトを直接作成できることについても触れられています。
このマイナーな更新は、ドキュメントの正確性と整合性を向上させ、Azureにおけるユーザーの体験をより良いものにするための重要なステップです。
articles/ai-studio/how-to/create-hub-terraform.md
Diff
@@ -27,8 +27,8 @@ In this article, you use Terraform to create an Azure AI Foundry hub, a project,
> * Set up a storage account
> * Establish a key vault
> * Configure AI services
-> * Build an AI Foundry hub
-> * Develop an AI Foundry project
+> * Build an Azure AI Foundry hub
+> * Develop an Azure AI Foundry project
> * Establish an AI services connection
## Prerequisites
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、create-hub-terraform.md
ファイルにおいて、「AI Foundryハブ」と「AI Foundryプロジェクト」という表現をそれぞれ「Azure AI Foundryハブ」と「Azure AI Foundryプロジェクト」に修正し、Azureにおける用語の一貫性を高めることを目的としています。
具体的には、本記事ではTerraformを使用してAzure AI Foundryハブとプロジェクトを作成する手順が説明されています。この修正により、ユーザーはAzureのブランドを正確に理解し、関連するリソースやプロジェクトを作成する際の内容がより明確になります。
このようなマイナーな修正は、ドキュメントの整合性を向上させ、ユーザーが情報を容易に理解し利用できるようにするための重要なステップです。
articles/ai-studio/how-to/create-projects.md
Diff
@@ -34,7 +34,7 @@ For more information about the projects and hubs model, see [Azure AI Foundry hu
Use the following tabs to select the method you plan to use to create a project:
-# [AI Foundry portal](#tab/ai-studio)
+# [Azure AI Foundry portal](#tab/ai-studio)
[!INCLUDE [Create Azure AI Foundry project](../includes/create-projects.md)]
@@ -85,11 +85,11 @@ The code in this section assumes you have an existing hub. If you don't have a
## View project settings
-# [AI Foundry portal](#tab/ai-studio)
+# [Azure AI Foundry portal](#tab/ai-studio)
On the project **Overview** page you can find information about the project.
-:::image type="content" source="../media/how-to/projects/project-settings.png" alt-text="Screenshot of an AI Foundry project settings page." lightbox = "../media/how-to/projects/project-settings.png":::
+:::image type="content" source="../media/how-to/projects/project-settings.png" alt-text="Screenshot of an Azure AI Foundry project settings page." lightbox = "../media/how-to/projects/project-settings.png":::
- Name: The name of the project appears in the top left corner. You can rename the project using the edit tool.
- Subscription: The subscription that hosts the hub that hosts the project.
@@ -133,7 +133,7 @@ In addition, a number of resources are only accessible by users in your project
| workspacefilestore | {project-GUID}-code | Hosts files created on your compute and using prompt flow |
> [!NOTE]
-> Storage connections are not created directly with the project when your storage account has public network access set to disabled. These are created instead when a first user accesses AI Foundry over a private network connection. [Troubleshoot storage connections](troubleshoot-secure-connection-project.md#troubleshoot-configurations-on-connecting-to-storage)
+> Storage connections are not created directly with the project when your storage account has public network access set to disabled. These are created instead when a first user accesses Azure AI Foundry over a private network connection. [Troubleshoot storage connections](troubleshoot-secure-connection-project.md#troubleshoot-configurations-on-connecting-to-storage)
## Related content
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、create-projects.md
ファイルにおいて、「AI Foundryポータル」という表現を「Azure AI Foundryポータル」に修正することで、用語の一貫性を高めることを目的としています。この修正は、Azureプラットフォームにおけるリソース作成に関する情報の正確性と明確さを強化します。
具体的には、プロジェクトとハブに関するモデルについての情報を提供し、プロジェクトの作成方法として選択可能なタブを示しています。また、プロジェクト設定の説明の中でも同様の修正が行われ、プロジェクトの設定ページに関する情報をより明確にしています。
このマイナーな修正は、ユーザーがAzureエコシステム内でのリソースやプロジェクトに関する情報をより正確に把握できるようにし、文書全体の整合性を向上させるために重要です。
articles/ai-studio/how-to/create-secure-ai-hub.md
Diff
@@ -38,7 +38,7 @@ You can secure your Azure AI Foundry hub, projects, and managed resources in a m
:::image type="content" source="../media/how-to/network/ai-hub-resources.png" alt-text="Screenshot of the Create a hub with the option to set resource information." lightbox="../media/how-to/network/ai-hub-resources.png":::
-1. Select **Next: Networking** to configure the managed virtual network that AI Foundry uses to secure its hub and projects.
+1. Select **Next: Networking** to configure the managed virtual network that Azure AI Foundry uses to secure its hub and projects.
1. Select **Private with Internet Outbound**, which allows compute resources to access the public internet for resources such as Python packages.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、create-secure-ai-hub.md
ファイル内の一文において、「AI Foundry」を「Azure AI Foundry」に修正し、用語の一貫性を高めることを目的としています。この修正により、ユーザーはAzureの特定のブランドとサービスについて正確に理解し、関係するリソースの設定を行う際の混乱を避けることができます。
具体的には、ドキュメントの内容において、Azure AI Foundryのハブとプロジェクトを保護するために使用する管理された仮想ネットワークの設定について説明している部分が更新されています。このようなマイナーな修正は、全体的なドキュメントの整合性を向上させ、ユーザーが正確で信頼性のある情報を得られるようにするために重要な役割を果たします。
articles/ai-studio/how-to/data-add.md
Diff
@@ -34,11 +34,11 @@ Data can help when you need these capabilities:
To create and work with data, you need:
- An Azure subscription. If you don't have one, create a [free account](https://azure.microsoft.com/free/).
-- An [AI Foundry project](../how-to/create-projects.md).
+- An [Azure AI Foundry project](../how-to/create-projects.md).
## Create data
-When you create your data, you need to set the data type. AI Foundry supports these data types:
+When you create your data, you need to set the data type. Azure AI Foundry supports these data types:
|Type |**Canonical Scenarios**|
|---------|---------|
@@ -119,9 +119,9 @@ A Folder (`uri_folder`) data source type points to a *folder* on a storage resou
### Delete data
> [!IMPORTANT]
-> Data deletion is not supported. Data is immutable in AI Foundry portal. Once you create a data version, it can't be modified or deleted. This immutability provides a level of protection when working in a team that creates production workloads.
+> Data deletion is not supported. Data is immutable in Azure AI Foundry portal. Once you create a data version, it can't be modified or deleted. This immutability provides a level of protection when working in a team that creates production workloads.
-If AI Foundry allowed data deletion, it would have the following adverse effects:
+If Azure AI Foundry allowed data deletion, it would have the following adverse effects:
- Production jobs that consume data that is later deleted would fail.
- Machine learning experiment reproduction would become more difficult.
- Job lineage would break, because it would become impossible to view the deleted data version.
@@ -182,7 +182,7 @@ You can add tags to existing data.
You can browse the folder structure and preview the file in the Data details page. We support data preview for the following types:
- Data file types that are supported via preview API: ".tsv", ".csv", ".parquet", ".jsonl".
-- Other file types, AI Foundry portal attempts to preview the file in the browser natively. The supported file types might depend on the browser itself.
+- Other file types, Azure AI Foundry portal attempts to preview the file in the browser natively. The supported file types might depend on the browser itself.
Normally for images, these file image types are supported: ".png", ".jpg", ".gif". Normally, these file types are supported: ".ipynb", ".py", ".yml", ".html".
## Next steps
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、data-add.md
ファイルにおいて、「AI Foundry」という表現を「Azure AI Foundry」に修正することで、用語の一貫性を強化することを目的としています。この修正により、Azure関連のサービスや機能についての明確さが向上し、ユーザーが正確に情報を理解できるようになります。
具体的には、データを作成し、操作するために必要な要件や、データタイプの設定についてのセクションが更新され、「AI Foundryポータル」の部分がすべて「Azure AI Foundryポータル」と改訂されています。また、データの削除がサポートされていないことや、データの不変性がチームでの作業にどのように貢献するかについても、言及が行われています。
このようなマイナーな修正は、ドキュメント全体の整合性を高め、ユーザーが使用する際により一貫した体験を提供するために重要です。
articles/ai-studio/how-to/data-image-add.md
Diff
@@ -28,7 +28,7 @@ Use this article to learn how to provide your own image data for GPT-4 Turbo wit
- An Azure OpenAI resource with the GPT-4 Turbo with Vision model deployed. For more information about model deployment, see the [resource deployment guide](../../ai-services/openai/how-to/create-resource.md).
- Be sure that you're assigned at least the [Cognitive Services Contributor role](../../ai-services/openai/how-to/role-based-access-control.md#cognitive-services-contributor) for the Azure OpenAI resource.
- An Azure AI Search resource. See [create an Azure AI Search service in the portal](/azure/search/search-create-service-portal). If you don't have an Azure AI Search resource, you're prompted to create one when you add your data source later in this guide.
-- An [AI Foundry hub](../how-to/create-azure-ai-resource.md) with your Azure OpenAI resource and Azure AI Search resource added as connections.
+- An [Azure AI Foundry hub](../how-to/create-azure-ai-resource.md) with your Azure OpenAI resource and Azure AI Search resource added as connections.
## Deploy a GPT-4 Turbo with Vision model
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、data-image-add.md
ファイル内の特定の文において、「AI Foundry」を「Azure AI Foundry」に修正することを目的としています。この変更により、用語の一貫性と正確さが向上し、ユーザーがAzure関連のリソースを理解する際に助けとなることを目指しています。
具体的には、ユーザーがGPT-4 Turbo with Visionモデルをデプロイする際に必要な要件のリストの中で、「AI Foundry hub」の表記が更新されています。この更新は、関連するAzureリソースを確実に認識できるようにするために重要です。用語の一貫性を保つことは、ドキュメント全体を通じての理解を深め、Azureの幅広いサービスに対するユーザーの信頼性向上に寄与します。
このようなマイナーな修正にもかかわらず、正しい用語を使用することは、技術文書において極めて重要です。これにより、ユーザーは必要なリソースや設定についてより正確に情報を得ることができます。
articles/ai-studio/how-to/deploy-models-cohere-rerank.md
Diff
@@ -83,7 +83,7 @@ To create a deployment:
4. Select the model card of the model you want to deploy. In this article, you select **Cohere-rerank-v3-english** to open the Model Details page.
1. Select **Deploy** to open a serverless API deployment window for the model.
-1. Alternatively, you can initiate a deployment from your project in the AI Foundry portal as follows:
+1. Alternatively, you can initiate a deployment from your project in the Azure AI Foundry portal as follows:
1. From the left sidebar of your project, select **Models + Endpoints**.
1. Select **+ Deploy model** > **Deploy base model**.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、deploy-models-cohere-rerank.md
ファイルにおいて、「AI Foundry」という表現を「Azure AI Foundry」に修正することで、用語の一貫性を向上させることを目的としています。この修正により、Azureに関連するサービスや機能についての明確さが増し、利用者が正確に情報を理解できるようになります。
具体的には、モデルのデプロイに関する手順の中で、プロジェクトからデプロイを開始する方法が説明されている部分での表記が更新されています。この変更によって、Azureの文脈での用語使用が一貫し、ユーザーがリソースをより良く理解できるようになります。
このようなマイナーな修正ではありますが、用語の適切な使用はドキュメント全体の整合性を保つために重要です。これにより、ユーザーはAzureリソースの利用方法について明確な理解を得ることができます。
articles/ai-studio/how-to/deploy-models-jamba.md
Diff
@@ -61,7 +61,7 @@ To get started with Jamba 1.5 mini deployed as a serverless API, explore our int
- Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure AI Foundry portal. To perform the steps in this article, your user account must be assigned the __owner__ or __contributor__ role for the Azure subscription. Alternatively, your account can be assigned a custom role that has the following permissions:
- - On the Azure subscription—to subscribe the AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
+ - On the Azure subscription—to subscribe the Azure AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/read`
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/sign/action`
- `Microsoft.MarketplaceOrdering/offerTypes/publishers/offers/plans/agreements/read`
@@ -72,7 +72,7 @@ To get started with Jamba 1.5 mini deployed as a serverless API, explore our int
- `Microsoft.SaaS/resources/read`
- `Microsoft.SaaS/resources/write`
- - On the AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
+ - On the Azure AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
- `Microsoft.MachineLearningServices/workspaces/marketplaceModelSubscriptions/*`
- `Microsoft.MachineLearningServices/workspaces/serverlessEndpoints/*`
@@ -89,7 +89,7 @@ These steps demonstrate the deployment of `AI21 Jamba 1.5 Large` or `AI21 Jamba
1. Select **Deploy** to open a serverless API deployment window for the model.
-1. Alternatively, you can initiate a deployment by starting from the **Models + endpoints** page in AI Foundry portal.
+1. Alternatively, you can initiate a deployment by starting from the **Models + endpoints** page in Azure AI Foundry portal.
1. From the left navigation pane of your project, select **My assets** > **Models + endpoints**.
1. Select **+ Deploy model** > **Deploy base model**.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、deploy-models-jamba.md
ファイルの一部で、「AI Foundry」という表現を「Azure AI Foundry」に修正することによって、用語の一貫性を向上させることを目的としています。この修正により、Azure関連のリソースや機能についての明確さが増し、読者が容易に理解できるようになります。
変更された部分には、Azureのロールベースのアクセス制御(RBAC)に関する説明や、モデルのデプロイメントを行うための手順が含まれています。特に、「AI Foundryプロジェクト」という表現が「Azure AI Foundryプロジェクト」となり、全体を通してAzureの文脈に合うように統一されています。
これにより、ユーザーがAzureのシステムを利用する際に、リソースや手順をより明確に把握できるようになります。用語の一貫性は技術文書において重要であり、正確な用語を用いることで、ユーザーが情報を正しく理解できる環境を提供します。
articles/ai-studio/how-to/deploy-models-managed.md
Diff
@@ -1,6 +1,6 @@
---
title: How to deploy and inference a managed compute deployment with code
-titleSuffix: AI Foundry
+titleSuffix: Azure AI Foundry
description: Learn how to deploy and inference a managed compute deployment with code.
manager: scottpolly
ms.service: azure-ai-studio
@@ -16,7 +16,7 @@ author: msakande
# How to deploy and inference a managed compute deployment with code
-the AI Foundry portal [model catalog](../how-to/model-catalog-overview.md) offers over 1,600 models, and the most common way to deploy these models is to use the managed compute deployment option, which is also sometimes referred to as a managed online deployment.
+the Azure AI Foundry portal [model catalog](../how-to/model-catalog-overview.md) offers over 1,600 models, and the most common way to deploy these models is to use the managed compute deployment option, which is also sometimes referred to as a managed online deployment.
Deployment of a large language model (LLM) makes it available for use in a website, an application, or other production environment. Deployment typically involves hosting the model on a server or in the cloud and creating an API or other interface for users to interact with the model. You can invoke the deployment for real-time inference of generative AI applications such as chat and copilot.
@@ -48,7 +48,7 @@ pip install azure-ai-ml
pip install azure-identity
```
-Use this code to authenticate with Azure Machine Learning and create a client object. Replace the placeholders with your subscription ID, resource group name, and AI Foundry project name.
+Use this code to authenticate with Azure Machine Learning and create a client object. Replace the placeholders with your subscription ID, resource group name, and Azure AI Foundry project name.
```python
from azure.ai.ml import MLClient
@@ -153,11 +153,11 @@ print(json.dumps(response_json, indent=2))
## Delete the deployment endpoint
-To delete deployments in AI Foundry portal, select the **Delete** button on the top panel of the deployment details page.
+To delete deployments in Azure AI Foundry portal, select the **Delete** button on the top panel of the deployment details page.
## Quota considerations
-To deploy and perform inferencing with real-time endpoints, you consume Virtual Machine (VM) core quota that is assigned to your subscription on a per-region basis. When you sign up for AI Foundry, you receive a default VM quota for several VM families available in the region. You can continue to create deployments until you reach your quota limit. Once that happens, you can request for a quota increase.
+To deploy and perform inferencing with real-time endpoints, you consume Virtual Machine (VM) core quota that is assigned to your subscription on a per-region basis. When you sign up for Azure AI Foundry, you receive a default VM quota for several VM families available in the region. You can continue to create deployments until you reach your quota limit. Once that happens, you can request for a quota increase.
## Next steps
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、deploy-models-managed.md
ファイルにおいて、「AI Foundry」という表現を「Azure AI Foundry」に修正することによって、用語の一貫性を高め、明確さを向上させることを目的としています。この修正により、ドキュメント全体がAzureの文脈に適合し、読者がより容易に理解できるようになります。
具体的には、AI Foundryポータルに関する説明や、モデルのデプロイメント手順において、AI Foundryという用語が一貫してAzure AI Foundryに置き換えられています。また、プロジェクト名の表記も統一され、正確なリソースの理解を促進しています。
この修正では、モデルカタログやデプロイメント責任者に関連する段落が特に影響を受けており、用語の統一が技術文書全体の質を向上させることに繋がります。読者はAzure AI Foundryの機能についてより正確な情報を得ることができるようになります。
articles/ai-studio/how-to/deploy-models-openai.md
Diff
@@ -34,7 +34,7 @@ To modify and interact with an Azure OpenAI model in the [Azure AI Foundry](http
## Deploy an Azure OpenAI model from the model catalog
-Follow the steps below to deploy an Azure OpenAI model such as `gpt-4o-mini` to a real-time endpoint from the AI Foundry portal [model catalog](./model-catalog-overview.md):
+Follow the steps below to deploy an Azure OpenAI model such as `gpt-4o-mini` to a real-time endpoint from the Azure AI Foundry portal [model catalog](./model-catalog-overview.md):
[!INCLUDE [open-catalog](../includes/open-catalog.md)]
@@ -52,9 +52,9 @@ Follow the steps below to deploy an Azure OpenAI model such as `gpt-4o-mini` to
## Deploy an Azure OpenAI model from your project
-Alternatively, you can initiate deployment by starting from your project in AI Foundry portal.
+Alternatively, you can initiate deployment by starting from your project in Azure AI Foundry portal.
-1. Go to your project in AI Foundry portal.
+1. Go to your project in Azure AI Foundry portal.
1. From the left sidebar of your project, go to **My assets** > **Models + endpoints**.
1. Select **+ Deploy model** > **Deploy base model**.
1. In the **Collections** filter, select **Azure OpenAI**.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、deploy-models-openai.md
ファイルにおいて、「AI Foundry」という表現を「Azure AI Foundry」に修正することで、専門用語の一貫性を向上させることを目的としています。具体的には、Azure OpenAIモデルをデプロイする手順に関する記述全体で、用語が統一され、より正確な情報が提供されるようになっています。
修正された箇所には、AI Foundryポータルからのモデルデプロイメント手順やプロジェクトからのデプロイメントに関する記述があります。「AI Foundry」から「Azure AI Foundry」に変更されたことにより、読者がAzureが提供する機能に関する情報を正確に理解できるようになります。
このように、用語の一貫性は文書の質を高め、ユーザーに対してより明確で理解しやすい内容を提供する重要な要素です。これにより、Azure OpenAIモデルのデプロイメントに対する理解を深め、実際の利用を促進することが期待されます。
articles/ai-studio/how-to/deploy-models-serverless-connect.md
Diff
@@ -41,7 +41,7 @@ The need to consume a serverless API endpoint in a different project or hub than
- You need to install the following software to work with Azure AI Foundry:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
You can use any compatible web browser to navigate [Azure AI Foundry](https://ai.azure.com).
@@ -88,7 +88,7 @@ Follow these steps to create a connection:
1. Connect to the project or hub where the endpoint is deployed:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
Go to [Azure AI Foundry](https://ai.azure.com) and navigate to the project where the endpoint you want to connect to is deployed.
@@ -116,9 +116,9 @@ Follow these steps to create a connection:
1. Get the endpoint's URL and credentials for the endpoint you want to connect to. In this example, you get the details for an endpoint name **meta-llama3-8b-qwerty**.
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
- 1. From the left sidebar of your project in AI Foundry portal, go to **My assets** > **Models + endpoints** to see the list of deployments in the project.
+ 1. From the left sidebar of your project in Azure AI Foundry portal, go to **My assets** > **Models + endpoints** to see the list of deployments in the project.
1. Select the deployment you want to connect to.
@@ -141,7 +141,7 @@ Follow these steps to create a connection:
1. Now, connect to the project or hub **where you want to create the connection**:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
Go to the project where the connection needs to be created to.
@@ -169,9 +169,9 @@ Follow these steps to create a connection:
1. Create the connection in the project:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
- 1. From your project in AI Foundry portal, go to the bottom part of the left sidebar and select **Management center**.
+ 1. From your project in Azure AI Foundry portal, go to the bottom part of the left sidebar and select **Management center**.
1. From the left sidebar of the management center, select **Connected resources**.
@@ -218,7 +218,7 @@ Follow these steps to create a connection:
1. To validate that the connection is working:
- 1. Return to your project in AI Foundry portal.
+ 1. Return to your project in Azure AI Foundry portal.
1. From the left sidebar of your project, go to **Build and customize** > **Prompt flow**.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、deploy-models-serverless-connect.md
ファイルにおいて、「AI Foundry」という表現を「Azure AI Foundry」に修正することで、ドキュメント全体の用語の一貫性と正確性を向上させることを目的としています。具体的には、サーバーレスAPIエンドポイントを利用する手順に関連するすべての箇所で「AI Foundry」から「Azure AI Foundry」へと表記が変更されています。
この修正により、ユーザーがAzureのリソースや機能についてより明確に理解できるようになります。修正された部分では、モデルのデプロイから接続の作成まで、さまざまなステップにおいて用語が統一されています。これにより、読者が情報をどのように解釈するかに一貫性が生まれ、混乱を避けることができるようになります。
さらに、これらの変更は、指示や手順の明確さを向上させ、ユーザーが適切にAzure AI Foundryを活用できるよう課題を解決するための重要な要素となります。最終的には、ユーザーがサーバーレスアーキテクチャを活用したモデルの接続やデプロイについて、よりスムーズに操作を行えるようになることが期待されます。
articles/ai-studio/how-to/deploy-models-serverless.md
Diff
@@ -35,7 +35,7 @@ This article uses a Meta Llama model deployment for illustration. However, you c
- You need to install the following software to work with Azure AI Foundry:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
You can use any compatible web browser to navigate [Azure AI Foundry](https://ai.azure.com).
@@ -132,7 +132,7 @@ Serverless API endpoints can deploy both Microsoft and non-Microsoft offered mod
1. Create the model's marketplace subscription. When you create a subscription, you accept the terms and conditions associated with the model offer.
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
1. On the model's **Details** page, select **Deploy**. A **Deployment options** window opens up, giving you the choice between serverless API deployment and deployment using a managed compute.
@@ -259,7 +259,7 @@ Serverless API endpoints can deploy both Microsoft and non-Microsoft offered mod
1. At any point, you can see the model offers to which your project is currently subscribed:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
1. Go to the [Azure portal](https://portal.azure.com).
@@ -314,7 +314,7 @@ In this section, you create an endpoint with the name **meta-llama3-8b-qwerty**.
1. Create the serverless endpoint
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
1. To deploy a Microsoft model that doesn't require subscribing to a model offering:
1. Select **Deploy** and then select **Serverless API with Azure AI Content Safety (preview)** to open the deployment wizard.
@@ -466,7 +466,7 @@ In this section, you create an endpoint with the name **meta-llama3-8b-qwerty**.
1. At any point, you can see the endpoints deployed to your project:
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
1. Go to your project.
@@ -515,7 +515,7 @@ In this section, you create an endpoint with the name **meta-llama3-8b-qwerty**.
1. The created endpoint uses key authentication for authorization. Use the following steps to get the keys associated with a given endpoint.
- # [AI Foundry portal](#tab/azure-ai-studio)
+ # [Azure AI Foundry portal](#tab/azure-ai-studio)
You can select the deployment, and note the endpoint's _Target URI_ and _Key_. Use them to call the deployment and generate predictions.
@@ -559,7 +559,7 @@ Read more about the [capabilities of this API](../reference/reference-model-infe
## Network isolation
-Endpoints for models deployed as Serverless APIs follow the public network access (PNA) flag setting of the AI Foundry portal Hub that has the project in which the deployment exists. To secure your MaaS endpoint, disable the PNA flag on your AI Foundry Hub. You can secure inbound communication from a client to your endpoint by using a private endpoint for the hub.
+Endpoints for models deployed as Serverless APIs follow the public network access (PNA) flag setting of the Azure AI Foundry portal Hub that has the project in which the deployment exists. To secure your MaaS endpoint, disable the PNA flag on your Azure AI Foundry Hub. You can secure inbound communication from a client to your endpoint by using a private endpoint for the hub.
To set the PNA flag for the Azure AI Foundry hub:
@@ -573,7 +573,7 @@ To set the PNA flag for the Azure AI Foundry hub:
You can delete model subscriptions and endpoints. Deleting a model subscription makes any associated endpoint become *Unhealthy* and unusable.
-# [AI Foundry portal](#tab/azure-ai-studio)
+# [Azure AI Foundry portal](#tab/azure-ai-studio)
To delete a serverless API endpoint:
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一致に関する修正"
}
Explanation
この変更は、deploy-models-serverless.md
ファイルにおいて、「AI Foundry」という表現を「Azure AI Foundry」に統一することを目的としています。これにより、ドキュメント内の用語一貫性と情報の正確性が向上します。変更が加えられた箇所では、未接続のサーバーレスAPIエンドポイントのデプロイメントに関する手順や条件が述べられています。
具体的には、システムや手順を説明する際のいくつかのステップで、「AI Foundry」から「Azure AI Foundry」に表現を変更しています。この更新により、読者はAzureが提供するサービスや機能についてより明確に理解しやすくなり、情報の正確性が増します。
この修正によって、手順を追うユーザーが一貫した用語を使った情報を基に作業することができ、混乱を避けることが可能になります。さらに、Azure AI Foundryを利用したサーバーレス環境でのモデルデプロイメントの理解が深まり、ユーザーの操作が円滑に進むことが期待されます。
articles/ai-studio/how-to/deploy-models-timegen-1.md
Diff
@@ -84,7 +84,7 @@ These steps demonstrate the deployment of TimeGEN-1. To create a deployment:
4. Select the model card of the model you want to deploy. In this article, you select **TimeGEN-1** to open the Model Details page.
1. Select **Deploy** to open a serverless API deployment window for the model.
-1. Alternatively, you can initiate a deployment from your project in the AI Foundry portal as follows:
+1. Alternatively, you can initiate a deployment from your project in the Azure AI Foundry portal as follows:
1. From the left sidebar of your project, select **Models + Endpoints**.
1. Select **+ Deploy model** > **Deploy base model**.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の追加による明確化"
}
Explanation
この変更は、deploy-models-timegen-1.md
ファイルにおいて、「AI Foundry」から「Azure AI Foundry」への用語変更を含んでいます。この修正は、Azureのサービスとしての正確さを保つために行われ、特に意味の明確化を図ることが目的です。
具体的には、モデルのデプロイ手順を説明する際のフレーズの一部が修正されました。これにより、ユーザーが「AI Foundry」という表現に混乱することなく、正確に「Azure AI Foundry」のもとで手続きを理解できるようになります。特に、モデルデプロイメントを開始する手順において、Azureの文脈が強調されています。
この修正により、ドキュメントの一貫性が向上し、読者は手順がどのプラットフォームに関連するかをより明確に認識できるようになります。全体として、この用語の修正は情報の正確性を高め、ユーザーの理解を助ける重要なステップとなります。
articles/ai-studio/how-to/develop/connections-add-sdk.md
Diff
@@ -1,5 +1,5 @@
---
-title: How to add a new connection in AI Foundry portal using the Azure Machine Learning SDK
+title: How to add a new connection in Azure AI Foundry portal using the Azure Machine Learning SDK
titleSuffix: Azure AI Foundry
description: This article provides instructions on how to add connections to other resources using the Azure Machine Learning SDK.
manager: scottpolly
@@ -25,7 +25,7 @@ Connections are a way to authenticate and consume both Microsoft and other resou
## Prerequisites
- An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try the [free or paid version of Azure AI Foundry](https://azure.microsoft.com/free/) today.
-- An Azure AI Foundry hub. For information on creating a hub, see [Create AI Foundry resources with the SDK](./create-hub-project-sdk.md).
+- An Azure AI Foundry hub. For information on creating a hub, see [Create Azure AI Foundry resources with the SDK](./create-hub-project-sdk.md).
- A resource to create a connection to. For example, an AI Services resource. The examples in this article use placeholders that you must replace with your own values when running the code.
## Set up your environment
Summary
{
"modification_type": "minor update",
"modification_title": "タイトルの文言修正"
}
Explanation
この変更は、connections-add-sdk.md
ファイルのタイトルと一部の文言に対して行われた修正です。具体的には、「AI Foundry portal」という表現を「Azure AI Foundry portal」に変更し、Microsoftのサービスとしての正確性と一貫性を高めています。
タイトルの変更により、読者がこの資料が具体的にAzureに関連するものであることをより明確に理解できるようになります。また、文章中の「AI Foundryリソースを作成する」部分でも同様に、「Azure AI Foundryリソースへ」という表現に修正されており、これもまた正確な表現を促進しています。
これにより、ユーザーはAzureの文脈におけるサービスやリソースの利用方法について明確に把握でき、一貫した情報が提供されることに繋がっています。このような用語の見直しは、ドキュメント全体の品質を向上させ、読者の理解を助ける重要な要素です。
articles/ai-studio/how-to/develop/create-hub-project-sdk.md
Diff
@@ -1,7 +1,7 @@
---
title: How to create a hub using the Azure Machine Learning SDK/CLI
titleSuffix: Azure AI Foundry
-description: This article provides instructions on how to create an AI Foundry hub using the Azure Machine Learning SDK and Azure CLI extension.
+description: This article provides instructions on how to create an Azure AI Foundry hub using the Azure Machine Learning SDK and Azure CLI extension.
manager: scottpolly
ms.service: azure-ai-studio
ms.custom: build-2024, devx-track-azurecli
@@ -16,7 +16,7 @@ author: sdgilley
[!INCLUDE [feature-preview](../../includes/feature-preview.md)]
-In this article, you learn how to create the following AI Foundry resources using the Azure Machine Learning SDK and Azure CLI (with machine learning extension):
+In this article, you learn how to create the following Azure AI Foundry resources using the Azure Machine Learning SDK and Azure CLI (with machine learning extension):
- An Azure AI Foundry hub
- An Azure AI Services connection
@@ -46,7 +46,7 @@ Use the following tabs to select whether you're using the Python SDK or Azure CL
---
-## Create the AI Foundry hub and AI Services connection
+## Create the Azure AI Foundry hub and AI Services connection
Use the following examples to create a new hub. Replace example string values with your own values:
@@ -127,7 +127,7 @@ You can use either an API key or credential-less YAML configuration file. For mo
---
-## Create an AI Foundry hub using existing dependency resources
+## Create an Azure AI Foundry hub using existing dependency resources
You can also create a hub using existing resources such as Azure Storage and Azure Key Vault. In the following examples, replace the example string values with your own values:
Summary
{
"modification_type": "minor update",
"modification_title": "用語の明確化"
}
Explanation
この変更は、create-hub-project-sdk.md
ファイルにおいて、AI Foundryに関する用語の一貫性を高めるための修正です。具体的には、「AI Foundry hub」という表現から「Azure AI Foundry hub」という表現に変更され、Azureの文脈を強調しています。
主な修正点は以下の通りです:
- 記事の説明文で「AI Foundry hub」を「Azure AI Foundry hub」に修正
- 文中で「AI Foundryリソース」を「Azure AI Foundryリソース」に変更
- セクションタイトルも同様に修正され、内容の一貫性が確保されています。
この変更により、ユーザーがこのドキュメントがAzureのサービスに関連するものであるという点を明確に理解できるようになり、情報の明確さと正確性が向上しています。特に、APIやリソースの作成手順において、どのプラットフォームにおける情報であるかがすぐに分かるようになったため、ユーザーが手順を適切に実行できる助けとなります。全体として、用語の整合性を図るための重要な修正です。
articles/ai-studio/how-to/develop/index-build-consume-sdk.md
Diff
@@ -23,12 +23,12 @@ In this article, you learn how to create an index and consume it from code. To c
You must have:
-- An [AI Foundry hub](../../how-to/create-azure-ai-resource.md) and [project](../../how-to/create-projects.md).
+- An [Azure AI Foundry hub](../../how-to/create-azure-ai-resource.md) and [project](../../how-to/create-projects.md).
- An [Azure AI Search service connection](../../how-to/connections-add.md#create-a-new-connection) to index the sample product and customer data. If you don't have an Azure AI Search service, you can create one from the [Azure portal](https://portal.azure.com/) or see the instructions [here](/azure/search/search-create-service-portal).
- Models for embedding:
- You can use an ada-002 embedding model from Azure OpenAI. The instructions to deploy can be found [here](../deploy-models-openai.md).
- - OR you can use any another embedding model deployed in your AI Foundry project. In this example we use Cohere multi-lingual embedding. The instructions to deploy this model can be found [here](../deploy-models-cohere-embed.md).
+ - OR you can use any another embedding model deployed in your Azure AI Foundry project. In this example we use Cohere multi-lingual embedding. The instructions to deploy this model can be found [here](../deploy-models-cohere-embed.md).
## Build and consume an index locally
@@ -88,9 +88,9 @@ local_index_aoai=build_index(
The above code builds an index locally. It uses environment variables to get the AI Search service and also to connect to the Azure OpenAI embedding model.
-### Build an index locally using other embedding models deployed in your AI Foundry project
+### Build an index locally using other embedding models deployed in your Azure AI Foundry project
-To create an index that uses an embedding model deployed in your AI Foundry project, we configure the connection to the model using a `ConnectionConfig` as shown below. The `subscription`, `resource_group` and `workspace` refers to the project where the embedding model is installed. The `connection_name` refers to the connection name for the model, which can be found in the AI Foundry project settings page.
+To create an index that uses an embedding model deployed in your Azure AI Foundry project, we configure the connection to the model using a `ConnectionConfig` as shown below. The `subscription`, `resource_group` and `workspace` refers to the project where the embedding model is installed. The `connection_name` refers to the connection name for the model, which can be found in the Azure AI Foundry project settings page.
```python
from promptflow.rag.config import ConnectionConfig
@@ -142,14 +142,14 @@ retriever.get_relevant_documents("<your search query>")
retriever=get_langchain_retriever_from_index(local_index_cohere)
retriever.get_relevant_documents("<your search query>")
```
-### Registering the index in your AI Foundry project (Optional)
+### Registering the index in your Azure AI Foundry project (Optional)
-Optionally, you can register the index in your AI Foundry project so that you or others who have access to your project can use it from the cloud. Before proceeding [install the required packages](#required-packages-for-remote-index-operations) for remote operations.
+Optionally, you can register the index in your Azure AI Foundry project so that you or others who have access to your project can use it from the cloud. Before proceeding [install the required packages](#required-packages-for-remote-index-operations) for remote operations.
#### Connect to the project
```python
-# connect to the AI Foundry project
+# connect to the Azure AI Foundry project
from azure.identity import DefaultAzureCredential
from azure.ai.ml import MLClient
@@ -185,9 +185,9 @@ client.indexes.create_or_update(
> [!NOTE]
> Environment variables are intended for convenience in a local environment. However, if you register a local index created using environment variables, the index may not function as expected because secrets from environment variables won't be transferred to the cloud index. To address this issue, you can use a `ConnectionConfig` or `connection_id` to create a local index before registering.
-## Build an index (remotely) in your AI Foundry project
+## Build an index (remotely) in your Azure AI Foundry project
-We build an index in the cloud in your AI Foundry project.
+We build an index in the cloud in your Azure AI Foundry project.
### Required packages for remote index operations
@@ -197,12 +197,12 @@ Install the following packages required for remote index creation.
pip install azure-ai-ml promptflow-rag langchain langchain-openai
```
-### Connect to the AI Foundry project
+### Connect to the Azure AI Foundry project
To get started, we connect to the project. The `subscription`, `resource_group` and `workspace` in the code below refers to the project you want to connect to.
```python
-# connect to the AI Foundry project
+# connect to the Azure AI Foundry project
from azure.identity import DefaultAzureCredential
from azure.ai.ml import MLClient
@@ -245,7 +245,7 @@ embeddings_model_config = IndexModelConfiguration.from_connection(
deployment_name="text-embedding-ada-002")
```
-You can connect to embedding model deployed in your AI Foundry project (non Azure OpenAI models) using the serverless connection.
+You can connect to embedding model deployed in your Azure AI Foundry project (non Azure OpenAI models) using the serverless connection.
```python
from azure.ai.ml.entities import IndexModelConfiguration
@@ -392,6 +392,6 @@ print(result["answer"])
## Related content
-- [Create and consume an index from the AI Foundry portal UI](../index-add.md)
+- [Create and consume an index from the Azure AI Foundry portal UI](../index-add.md)
- [Get started building a chat app using the prompt flow SDK](../../quickstarts/get-started-code.md)
- [Work with projects in VS Code](vscode.md)
\ No newline at end of file
Summary
{
"modification_type": "minor update",
"modification_title": "用語の更新と明確化"
}
Explanation
この変更は、index-build-consume-sdk.md
ファイルにおいて、Azure AI Foundryに関連する用語の更新が行われたものです。具体的には、すべての「AI Foundry」という表現を「Azure AI Foundry」に一貫して修正し、文書全体の整合性を高めています。
主な変更点は以下の通りです:
- 段落の冒頭やセクションタイトルでの「AI Foundry」から「Azure AI Foundry」への置き換え。
- 説明文中の用語をより具体的にすることで、Azureのサービスであることを明確にしています。
これにより、読者は本ドキュメントが特定のAzureのサービスに関連するものであることをより明確に理解できます。また、手順やコード例の中でも用語の一貫性が保たれ、ユーザーが具体的な操作を行いやすくなっています。
全体として、この修正は、広範囲にわたる用語の正確な使用を促進し、ユーザーに対し、情報がAzureに関連することを強調するという重要な目的を果たしています。これによって、ドキュメントの品質と信頼性が向上しています。
articles/ai-studio/how-to/develop/sdk-overview.md
Diff
@@ -24,7 +24,7 @@ The Azure AI Foundry SDK is a comprehensive toolchain designed to simplify the d
- Easily combine together models, data, and AI services to build AI-powered applications
- Evaluate, debug, and improve application quality & safety across development, testing, and production environments
-The AI Foundry SDK is a set of packages and services designed to work together. You can use the [Azure AI Projects client library](/python/api/overview/azure/ai-projects-readme) to easily use multiple services through a single project client and connection string. You can also use services and SDKs on their own and connect directly to your services.
+The Azure AI Foundry SDK is a set of packages and services designed to work together. You can use the [Azure AI Projects client library](/python/api/overview/azure/ai-projects-readme) to easily use multiple services through a single project client and connection string. You can also use services and SDKs on their own and connect directly to your services.
If you want to jump right in and start building an app, check out:
@@ -173,7 +173,7 @@ If you have existing code that uses the OpenAI SDK, you can use the project clie
::: zone-end
-If you’re already using the [Azure OpenAI SDK](../../../ai-services/openai/chatgpt-quickstart.md) directly against the Azure OpenAI Service, the project provides a convenient way to use Azure OpenAI Service capabilities alongside the rest of the AI Foundry capabilities.
+If you’re already using the [Azure OpenAI SDK](../../../ai-services/openai/chatgpt-quickstart.md) directly against the Azure OpenAI Service, the project provides a convenient way to use Azure OpenAI Service capabilities alongside the rest of the Azure AI Foundry capabilities.
## Azure AI model inference service
Summary
{
"modification_type": "minor update",
"modification_title": "用語の整合性の向上"
}
Explanation
この変更は、sdk-overview.md
ファイルにおける文言の修正を通じて、Azure AI Foundryの用語の整合性を向上させることを目的としています。具体的には、「AI Foundry capability」という表現が「Azure AI Foundry capability」に変更され、Azureという名称が明示的に示されるようになっています。
主な変更点は以下の通りです:
- 「AI Foundry SDK」が「Azure AI Foundry SDK」に、さらに関連するサービスや機能についても同様に「Azure」を追加することで、Azure技術とのつながりをより明確にしています。
この修正により、読者がAzureのサービスの一部としてAI Foundryをより理解しやすくなることが期待されます。また、用語の一貫性が高まることで、文書の全体的な明確さと信頼性も向上します。
全体として、この更新は、利用者に対してAzureサービスの内容をより正確に伝え、技術文書としての質を向上させる重要な修正です。
articles/ai-studio/how-to/develop/simulator-interaction-data.md
Diff
@@ -307,7 +307,7 @@ Augment and accelerate your red-teaming operation by using Azure AI Foundry safe
from azure.ai.evaluation.simulator import AdversarialSimulator
```
-The adversarial simulator works by setting up a service-hosted GPT large language model to simulate an adversarial user and interact with your application. An AI Foundry project is required to run the adversarial simulator:
+The adversarial simulator works by setting up a service-hosted GPT large language model to simulate an adversarial user and interact with your application. An Azure AI Foundry project is required to run the adversarial simulator:
```python
from azure.identity import DefaultAzureCredential
Summary
{
"modification_type": "minor update",
"modification_title": "用語の明確化"
}
Explanation
この変更は、simulator-interaction-data.md
ファイルにおいて、用語の明確化を目的とした修正です。具体的には、「AI Foundryプロジェクト」を「Azure AI Foundryプロジェクト」と表現を変更し、プロジェクトがAzureに関連していることをより明示しています。
主な変更点は以下の通りです:
- 言及されている「AI Foundryプロジェクト」の表現が「Azure AI Foundryプロジェクト」に置き換えられ、Azureとの関連性が強調されています。
この修正により、読者が必要なプロジェクトが特定のAzureのサービスに関連することを理解しやすくなり、文書全体の整合性と明確さが向上します。
全体として、この変更は、情報の正確性向上と、Azureサービスに対する明確な理解を促進するための重要な修正です。
articles/ai-studio/how-to/develop/trace-local-sdk.md
Diff
@@ -26,7 +26,7 @@ In this article you'll learn how to trace your application with Azure AI Inferen
- An [Azure Subscription](https://azure.microsoft.com/).
- An Azure AI project, see [Create a project in Azure AI Foundry portal](../create-projects.md).
-- An AI model supporting the [Azure AI model inference API](https://aka.ms/azureai/modelinference) deployed through AI Foundry.
+- An AI model supporting the [Azure AI model inference API](https://aka.ms/azureai/modelinference) deployed through Azure AI Foundry.
- If using Python, you need Python 3.8 or later installed, including pip.
- If using JavaScript, the supported environments are LTS versions of Node.js.
@@ -209,7 +209,7 @@ To trace your own custom functions, you can leverage OpenTelemetry, you'll need
## Attach User feedback to traces
-To attach user feedback to traces and visualize them in AI Foundry portal using OpenTelemetry's semantic conventions, you can instrument your application enabling tracing and logging user feedback. By correlating feedback traces with their respective chat request traces using the response ID, you can use view and manage these traces in AI Foundry portal. OpenTelemetry's specification allows for standardized and enriched trace data, which can be analyzed in AI Foundry portal for performance optimization and user experience insights. This approach helps you use the full power of OpenTelemetry for enhanced observability in your applications.
+To attach user feedback to traces and visualize them in Azure AI Foundry portal using OpenTelemetry's semantic conventions, you can instrument your application enabling tracing and logging user feedback. By correlating feedback traces with their respective chat request traces using the response ID, you can use view and manage these traces in Azure AI Foundry portal. OpenTelemetry's specification allows for standardized and enriched trace data, which can be analyzed in Azure AI Foundry portal for performance optimization and user experience insights. This approach helps you use the full power of OpenTelemetry for enhanced observability in your applications.
## Related content
Summary
{
"modification_type": "minor update",
"modification_title": "用語の整合性を高める修正"
}
Explanation
この変更は、trace-local-sdk.md
ファイルにおいて、用語の整合性を高めることを目的とした修正です。具体的には、「AI Foundryポータル」との表現が「Azure AI Foundryポータル」と変更され、プロジェクトがAzureに関連していることを明確にしています。
主な変更点は以下の通りです:
- 「AI Foundry」という用語が「Azure AI Foundry」として変更されており、Azureとの関連性がより強調されています。
この修正により、読者は対象のポータルがAzureサービスの一部であることを理解しやすくなり、文書の全体的な明確さと信頼性が向上します。また、用語の一貫性が高まることで、技術文書としての質も向上されます。
全体として、この更新は、情報の正確性を向上させ、Azureサービスへの理解を深めるための重要な修正だと言えます。
articles/ai-studio/how-to/develop/trace-production-sdk.md
Diff
@@ -27,7 +27,7 @@ In this article, you learn to enable tracing, collect aggregated metrics, and co
## Prerequisites
- The Azure CLI and the Azure Machine Learning extension to the Azure CLI.
-- An AI Foundry project. If you don't already have a project, you can [create one here](../../how-to/create-projects.md).
+- An Azure AI Foundry project. If you don't already have a project, you can [create one here](../../how-to/create-projects.md).
- An Application Insights. If you don't already have an Application Insights resource, you can [create one here](/azure/azure-monitor/app/create-workspace-resource).
- Azure role-based access controls are used to grant access to operations in Azure Machine Learning. To perform the steps in this article, you must have **Owner** or **Contributor** permissions on the selected resource group. For more information, see [Role-based access control in Azure AI Foundry portal](../../concepts/rbac-ai-studio.md).
@@ -42,7 +42,7 @@ You can also [deploy to other platforms, such as Docker container, Kubernetes cl
## Enable trace and collect system metrics for your deployment
-If you're using AI Foundry portal to deploy, then you can turn-on **Application Insights diagnostics** in **Advanced settings** > **Deployment** step in the deployment wizard, in which way the tracing data and system metrics are collected to the project linked to Application Insights.
+If you're using Azure AI Foundry portal to deploy, then you can turn-on **Application Insights diagnostics** in **Advanced settings** > **Deployment** step in the deployment wizard, in which way the tracing data and system metrics are collected to the project linked to Application Insights.
If you're using SDK or CLI, you can by adding a property `app_insights_enabled: true` in the deployment yaml file that collects data to the project linked to application insights.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、trace-production-sdk.md
ファイルにおいて、用語の一貫性を高めることを目的とした修正です。具体的には、「AI Foundryプロジェクト」が「Azure AI Foundryプロジェクト」に変更されており、Azureに関連することがより明確になっています。
主な変更点は以下の通りです:
- 「AI Foundry」という表現が「Azure AI Foundry」として統一され、サービスがAzureの一部であることが強調されています。
この修正によって、読者は対象のプロジェクトがAzureに関連していることが明確になり、文書全体の理解が容易になります。また、用語の統一は、技術文書の正確性と信頼性を高めるためにも重要です。
全体として、この更新は、情報の正確性向上と、Azureサービスへの理解を促進するための重要な修正であると言えるでしょう。
articles/ai-studio/how-to/develop/visualize-traces.md
Diff
@@ -54,7 +54,7 @@ os.environ['AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED'] = 'true'
application_insights_connection_string = project.telemetry.get_connection_string()
if not application_insights_connection_string:
print("Application Insights was not enabled for this project.")
- print("Enable it via the 'Tracing' tab in your AI Foundry project page.")
+ print("Enable it via the 'Tracing' tab in your Azure AI Foundry project page.")
exit()
configure_azure_monitor(connection_string=application_insights_connection_string)
Summary
{
"modification_type": "minor update",
"modification_title": "用語の統一に関する修正"
}
Explanation
この変更は、visualize-traces.md
ファイルにおいて、用語の統一を目的とした修正です。特に、「AI Foundryプロジェクト」が「Azure AI Foundryプロジェクト」に変更され、Azureに関連することが明確に表現されています。
主な変更点は以下の通りです:
- エラーメッセージ内の「AI Foundry」が「Azure AI Foundry」に修正されました。
この修正により、読者は対象のプロジェクトがAzure内のものであることを一貫して理解できるようになります。また、用語の統一は、技術文書の信頼性と分かりやすさを向上させるために重要です。
全体として、この更新は情報の正確性を向上させ、Azureサービスへの理解を促進するための小規模ながら重要な修正であるといえます。
articles/ai-studio/how-to/develop/vscode.md
Diff
@@ -46,7 +46,7 @@ Azure AI Foundry supports developing in VS Code - Desktop and Web. In each scena
Our prebuilt development environments are based on a docker container that has Azure AI SDKs, the prompt flow SDK, and other tools. The environment is configured to run VS Code remotely inside of the container. The container is defined in a similar way to [this Dockerfile](https://github.com/Azure-Samples/aistudio-python-quickstart-sample/blob/main/.devcontainer/Dockerfile), and is based on [Microsoft's Python 3.10 Development Container Image](https://mcr.microsoft.com/product/devcontainers/python/about).
-Your file explorer is opened to the specific project directory you launched from in AI Foundry portal.
+Your file explorer is opened to the specific project directory you launched from in Azure AI Foundry portal.
The container is configured with the Azure AI folder hierarchy (`afh` directory), which is designed to orient you within your current development context, and help you work with your code, data, and shared files most efficiently. This `afh` directory houses your Azure AI Foundry projects, and each project has a dedicated project directory that includes `code`, `data`, and `shared` folders.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性の修正"
}
Explanation
この変更は、vscode.md
ファイルにおいて、用語の一貫性を高めることを目的とした修正です。「AI Foundryポータル」が「Azure AI Foundryポータル」に修正されており、Azureとの関連性が明確に示されています。
主な変更点は以下の通りです:
- 「AI Foundryポータル」という表現が「Azure AI Foundryポータル」に修正されました。
この修正により、読者はプロジェクトがAzureに関連していることを認識しやすくなります。用語の統一は文書の理解を助け、読者に正確な情報を提供するために重要です。
全体として、この更新は、言語の明確さと正確性を向上させるための重要な修正であり、Azureサービスへの理解を促進します。
articles/ai-studio/how-to/disable-local-auth.md
Diff
@@ -226,7 +226,7 @@ If you have an existing Azure AI Foundry hub, use the steps in this section to u
# [Azure portal](#tab/portal)
-1. Go to the Azure portal and select the __AI Foundry hub__.
+1. Go to the Azure portal and select the __Azure AI Foundry hub__.
1. From the left menu, select **Properties**. From the bottom of the page, set __Storage account access type__ to __Identity-based__. Select __Save__ from the top of the page to save the configuration.
:::image type="content" source="../media/disable-local-auth/update-existing-hub-identity-based-access.png" alt-text="Screenshot showing selection of Identity-based access." lightbox="../media/disable-local-auth/update-existing-hub-identity-based-access.png":::
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、disable-local-auth.md
ファイルにおける用語の一貫性を目指した修正です。「AI Foundry hub」という表現が「Azure AI Foundry hub」に修正され、Azureとの関連性がより明確になっています。
主な変更点は以下の通りです:
- 手順の冒頭にある「AI Foundry hub」が「Azure AI Foundry hub」に修正されました。
この修正により、読者は当該ハブがAzureに関連していることを容易に理解できるようになります。また、用語の統一は文書の全体的な品質を向上させ、読者に対してより正確な情報を提供するために重要です。
全体として、この更新は、Azure関連の文書における言語の明確さと正確性を向上させるための重要な修正であり、読者の理解を助けます。
articles/ai-studio/how-to/disaster-recovery.md
Diff
@@ -84,8 +84,8 @@ Azure AI Foundry builds on top of other services. Some services can be configure
| Azure service | Geo-replicated by | Configuration |
| ----- | ----- | ----- |
-| AI Foundry hub and projects | You | Create a hub/projects in the selected regions. |
-| AI Foundry compute | You | Create the compute resources in the selected regions. For compute resources that can dynamically scale, make sure that both regions provide sufficient compute quota for your needs. |
+| Azure AI Foundry hub and projects | You | Create a hub/projects in the selected regions. |
+| Azure AI Foundry compute | You | Create the compute resources in the selected regions. For compute resources that can dynamically scale, make sure that both regions provide sufficient compute quota for your needs. |
| Key Vault | Microsoft | Use the same Key Vault instance with the Azure AI Foundry hub and resources in both regions. Key Vault automatically fails over to a secondary region. For more information, see [Azure Key Vault availability and redundancy](/azure/key-vault/general/disaster-recovery-guidance).|
| Storage Account | You | Azure Machine Learning doesn't support __default storage-account__ failover using geo-redundant storage (GRS), geo-zone-redundant storage (GZRS), read-access geo-redundant storage (RA-GRS), or read-access geo-zone-redundant storage (RA-GZRS). Configure a storage account according to your needs and then use it for your hub. All subsequent projects use the hub's storage account. For more information, see [Azure Storage redundancy](/azure/storage/common/storage-redundancy). |
| Container Registry | Microsoft | Configure the Container Registry instance to geo-replicate registries to the paired region for Azure AI Foundry. Use the same instance for both hub instances. For more information, see [Geo-replication in Azure Container Registry](/azure/container-registry/container-registry-geo-replication). |
@@ -120,7 +120,7 @@ For any hubs that are essential to business continuity, deploy resources in two
In the scenario in which you're connecting with data to customize your AI application, typically your datasets could be used in Azure AI but also outside of Azure AI. Dataset volume could be quite large, so for it might be good practice to keep this data in a separate storage account. Evaluate what data replication strategy makes most sense for your use case.
-In AI Foundry portal, make a connection to your data. If you have multiple AI Foundry instances in different regions, you might still point to the same storage account because connections work across regions.
+In Azure AI Foundry portal, make a connection to your data. If you have multiple Azure AI Foundry instances in different regions, you might still point to the same storage account because connections work across regions.
## Initiate a failover
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、disaster-recovery.md
ファイルにおける用語の一貫性を目指した修正です。「AI Foundry hub」および「AI Foundry compute」という表現が「Azure AI Foundry hub」および「Azure AI Foundry compute」に修正され、Azureとの関連性を強調しています。
主な変更点は以下の通りです:
- 「AI Foundry hub」と「AI Foundry compute」がそれぞれ「Azure AI Foundry hub」と「Azure AI Foundry compute」に修正されました。
- パラグラフ内の文言も同様の修正が施されています。
これにより、読者はこれらのリソースがAzureに関連していることをより明確に理解できるようになります。用語の統一は、文書の一貫性と正確性を向上させるために重要であり、誤解を避ける助けになります。
全体として、この更新は、Azure関連のサービスにおける言語の明確さを向上させるための重要な修正であり、読者の理解を助けます。
articles/ai-studio/how-to/evaluate-generative-ai-app.md
Diff
@@ -16,7 +16,7 @@ author: lgayhardt
To thoroughly assess the performance of your generative AI models and applications when applied to a substantial dataset, you can initiate an evaluation process. During this evaluation, your model or application is tested with the given dataset, and its performance will be quantitatively measured with both mathematical based metrics and AI-assisted metrics. This evaluation run provides you with comprehensive insights into the application's capabilities and limitations.
-To carry out this evaluation, you can utilize the evaluation functionality in Azure AI Foundry portal, a comprehensive platform that offers tools and features for assessing the performance and safety of your generative AI model. In AI Foundry portal, you're able to log, view, and analyze detailed evaluation metrics.
+To carry out this evaluation, you can utilize the evaluation functionality in Azure AI Foundry portal, a comprehensive platform that offers tools and features for assessing the performance and safety of your generative AI model. In Azure AI Foundry portal, you're able to log, view, and analyze detailed evaluation metrics.
In this article, you learn to create an evaluation run against model, a test dataset or a flow with built-in evaluation metrics from Azure AI Foundry UI. For greater flexibility, you can establish a custom evaluation flow and employ the **custom evaluation** feature. Alternatively, if your objective is solely to conduct a batch run without any evaluation, you can also utilize the custom evaluation feature.
@@ -29,7 +29,7 @@ To run an evaluation with AI-assisted metrics, you need to have the following re
## Create an evaluation with built-in evaluation metrics
-An evaluation run allows you to generate metric outputs for each data row in your test dataset. You can choose one or more evaluation metrics to assess the output from different aspects. You can create an evaluation run from the evaluation, model catalog or prompt flow pages in AI Foundry portal. Then an evaluation creation wizard appears to guide you through the process of setting up an evaluation run.
+An evaluation run allows you to generate metric outputs for each data row in your test dataset. You can choose one or more evaluation metrics to assess the output from different aspects. You can create an evaluation run from the evaluation, model catalog or prompt flow pages in Azure AI Foundry portal. Then an evaluation creation wizard appears to guide you through the process of setting up an evaluation run.
### From the evaluate page
@@ -235,7 +235,7 @@ The evaluator library is a centralized place that allows you to see the details
The evaluator library also enables version management. You can compare different versions of your work, restore previous versions if needed, and collaborate with others more easily.
-To use the evaluator library in AI Foundry portal, go to your project's **Evaluation** page and select the **Evaluator library** tab.
+To use the evaluator library in Azure AI Foundry portal, go to your project's **Evaluation** page and select the **Evaluator library** tab.
:::image type="content" source="../media/evaluations/evaluate/evaluator-library-list.png" alt-text="Screenshot of the page to select evaluators from the evaluator library." lightbox="../media/evaluations/evaluate/evaluator-library-list.png":::
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、evaluate-generative-ai-app.md
ファイルにおいて、用語の一貫性を向上させるために行われた修正です。「AI Foundry portal」という表現が「Azure AI Foundry portal」に修正され、Azureとの関連性が明確になっています。
主な変更点は以下の通りです:
- 文中の「AI Foundry portal」が「Azure AI Foundry portal」に修正され、用語の統一が図られています。
この修正により、読者は対象となるプラットフォームがAzureに関連していることを即座に認識できるようになります。用語の一貫性は、文書全体の明瞭性を高め、混乱を避ける効果があります。
全体として、この更新は、Azure関連のサービスにおける表現の明確さを向上させるための重要な修正であり、読者が情報を正確に理解しやすくする助けとなります。
articles/ai-studio/how-to/evaluate-results.md
Diff
@@ -17,7 +17,7 @@ author: lgayhardt
# How to view evaluation results in Azure AI Foundry portal
-The Azure AI Foundry portal evaluation page is a versatile hub that not only allows you to visualize and assess your results but also serves as a control center for optimizing, troubleshooting, and selecting the ideal AI model for your deployment needs. It's a one-stop solution for data-driven decision-making and performance enhancement in your AI Foundry projects. You can seamlessly access and interpret the results from various sources, including your flow, the playground quick test session, evaluation submission UI, and SDK. This flexibility ensures that you can interact with your results in a way that best suits your workflow and preferences.
+The Azure AI Foundry portal evaluation page is a versatile hub that not only allows you to visualize and assess your results but also serves as a control center for optimizing, troubleshooting, and selecting the ideal AI model for your deployment needs. It's a one-stop solution for data-driven decision-making and performance enhancement in your Azure AI Foundry projects. You can seamlessly access and interpret the results from various sources, including your flow, the playground quick test session, evaluation submission UI, and SDK. This flexibility ensures that you can interact with your results in a way that best suits your workflow and preferences.
Once you've visualized your evaluation results, you can dive into a thorough examination. This includes the ability to not only view individual results but also to compare these results across multiple evaluation runs. By doing so, you can identify trends, patterns, and discrepancies, gaining invaluable insights into the performance of your AI system under various conditions.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、evaluate-results.md
ファイルにおいて、 Azureに関する用語の一貫性を向上させるために行われた修正です。特に、「AI Foundryプロジェクト」という表現が「Azure AI Foundryプロジェクト」に修正されています。
主な変更点は以下の通りです:
- 「あなたのAI Foundryプロジェクト」という表現が「あなたのAzure AI Foundryプロジェクト」に修正され、Azureとの関連性が際立っています。
このように用語を統一することで、読者は対象となるプラットフォームがAzureに属することを明確に理解できるようになります。文書の一貫性を保つことは、情報の明瞭さを高め、誤解を避けるために非常に重要です。
全体として、この更新は、Azureに関連するサービスについての表現の明確さを向上させ、読者が情報を理解しやすくするための価値ある修正です。
articles/ai-studio/how-to/fine-tune-model-llama.md
Diff
@@ -66,7 +66,7 @@ Fine-tuning of Llama 2 models is currently supported in projects located in West
- An [Azure AI Foundry project](../how-to/create-projects.md) in Azure AI Foundry portal.
- Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure AI Foundry portal. To perform the steps in this article, your user account must be assigned the __owner__ or __contributor__ role for the Azure subscription. Alternatively, your account can be assigned a custom role that has the following permissions:
- - On the Azure subscription—to subscribe the AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
+ - On the Azure subscription—to subscribe the Azure AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/read`
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/sign/action`
- `Microsoft.MarketplaceOrdering/offerTypes/publishers/offers/plans/agreements/read`
@@ -77,7 +77,7 @@ Fine-tuning of Llama 2 models is currently supported in projects located in West
- `Microsoft.SaaS/resources/read`
- `Microsoft.SaaS/resources/write`
- - On the AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
+ - On the Azure AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
- `Microsoft.MachineLearningServices/workspaces/marketplaceModelSubscriptions/*`
- `Microsoft.MachineLearningServices/workspaces/serverlessEndpoints/*`
@@ -87,15 +87,15 @@ Fine-tuning of Llama 2 models is currently supported in projects located in West
# [Meta Llama 2](#tab/llama-two)
An Azure subscription with a valid payment method. Free or trial Azure subscriptions won't work. If you don't have an Azure subscription, create a [paid Azure account](https://azure.microsoft.com/pricing/purchase-options/pay-as-you-go) to begin.
-- An [AI Foundry hub](../how-to/create-azure-ai-resource.md).
+- An [Azure AI Foundry hub](../how-to/create-azure-ai-resource.md).
> [!IMPORTANT]
> For Meta Llama 2 models, the pay-as-you-go model fine-tune offering is only available with hubs created in the **West US 3** region.
-- An [AI Foundry project](../how-to/create-projects.md) in Azure AI Foundry portal.
+- An [Azure AI Foundry project](../how-to/create-projects.md) in Azure AI Foundry portal.
- Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure AI Foundry portal. To perform the steps in this article, your user account must be assigned the __owner__ or __contributor__ role for the Azure subscription. Alternatively, your account can be assigned a custom role that has the following permissions:
- - On the Azure subscription—to subscribe the AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
+ - On the Azure subscription—to subscribe the Azure AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/read`
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/sign/action`
- `Microsoft.MarketplaceOrdering/offerTypes/publishers/offers/plans/agreements/read`
@@ -106,7 +106,7 @@ Fine-tuning of Llama 2 models is currently supported in projects located in West
- `Microsoft.SaaS/resources/read`
- `Microsoft.SaaS/resources/write`
- - On the AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
+ - On the Azure AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
- `Microsoft.MachineLearningServices/workspaces/marketplaceModelSubscriptions/*`
- `Microsoft.MachineLearningServices/workspaces/serverlessEndpoints/*`
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、fine-tune-model-llama.md
ファイルにおいて、用語の一貫性を向上させるための修正が行われました。具体的には、「AI Foundryプロジェクト」や「AI Foundry hub」といった表現が「Azure AI Foundryプロジェクト」「Azure AI Foundry hub」に修正されています。
主な変更点は以下の通りです:
- 「AI Foundryプロジェクト」が「Azure AI Foundryプロジェクト」に変更され、Azureとの関連性がより明確になりました。
- 同様に「AI Foundry hub」が「Azure AI Foundry hub」に修正され、一貫性が強化されています。
これにより、文章全体を通して、Azureプラットフォームとの関連性が強調され、読者は正確な文脈を理解しやすくなります。用語の統一は、文書の明瞭性を高め、誤解を避けるために非常に重要です。
全体として、この更新は、Azureに関連したサービスや機能についての表現の明確さを向上させ、読者が情報をよりよく理解できるようにするための価値ある修正です。
articles/ai-studio/how-to/fine-tune-models-tsuzumi.md
Diff
@@ -38,7 +38,7 @@ In this article, you learn how to fine-tune an NTTDATA tsuzumi-7b model in [Azur
- An [Azure AI Foundry project](../how-to/create-projects.md) in Azure AI Foundry portal.
- Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure AI Foundry portal. To perform the steps in this article, your user account must be assigned the __owner__ or __contributor__ role for the Azure subscription. Alternatively, your account can be assigned a custom role that has the following permissions:
- - On the Azure subscription—to subscribe the AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
+ - On the Azure subscription—to subscribe the Azure AI Foundry project to the Azure Marketplace offering, once for each project, per offering:
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/read`
- `Microsoft.MarketplaceOrdering/agreements/offers/plans/sign/action`
- `Microsoft.MarketplaceOrdering/offerTypes/publishers/offers/plans/agreements/read`
@@ -49,7 +49,7 @@ In this article, you learn how to fine-tune an NTTDATA tsuzumi-7b model in [Azur
- `Microsoft.SaaS/resources/read`
- `Microsoft.SaaS/resources/write`
- - On the AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
+ - On the Azure AI Foundry project—to deploy endpoints (the Azure AI Developer role contains these permissions already):
- `Microsoft.MachineLearningServices/workspaces/marketplaceModelSubscriptions/*`
- `Microsoft.MachineLearningServices/workspaces/serverlessEndpoints/*`
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、fine-tune-models-tsuzumi.md
ファイルにおいて、用語の一貫性を向上させるための修正が行われました。具体的には、「AI Foundryプロジェクト」という表現が「Azure AI Foundryプロジェクト」に修正されています。
主な変更点は以下の通りです:
- 「AI Foundryプロジェクト」という表現が「Azure AI Foundryプロジェクト」に変更され、Azureとの関連性が強化されました。
この修正により、読者は特定のプラットフォームに関連する内容を明確に理解できるようになります。用語の統一がなされることで、文書全体の明瞭性が向上し、情報が混乱なく伝えられることが期待されます。
全体として、この更新は、Azureに関連するサービスについての表現の一貫性を保ち、読者が情報をより正確に理解できるようにするための価値ある修正です。
articles/ai-studio/how-to/fine-tune-phi-3.md
Diff
@@ -64,12 +64,12 @@ The models underwent a rigorous enhancement process, incorporating both supervis
### Prerequisites
- An Azure subscription. If you don't have an Azure subscription, create a [paid Azure account](https://azure.microsoft.com/pricing/purchase-options/pay-as-you-go) to begin.
-- An [AI Foundry hub](../how-to/create-azure-ai-resource.md).
+- An [Azure AI Foundry hub](../how-to/create-azure-ai-resource.md).
> [!IMPORTANT]
> For Phi-3 family models, the pay-as-you-go model fine-tune offering is only available with hubs created in **East US 2** regions.
-- An [AI Foundry project](../how-to/create-projects.md).
+- An [Azure AI Foundry project](../how-to/create-projects.md).
- Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure AI Foundry portal. To perform the steps in this article, your user account must be assigned the __Azure AI Developer role__ on the resource group.
For more information on permissions, see [Role-based access control in Azure AI Foundry portal](../concepts/rbac-ai-studio.md).
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、fine-tune-phi-3.md
ファイルにおいて、用語の一貫性を向上させるための修正が行われました。具体的には、「AI Foundry hub」や「AI Foundryプロジェクト」といった表現がそれぞれ「Azure AI Foundry hub」や「Azure AI Foundryプロジェクト」に修正されています。
主な変更点は以下の通りです:
- 「AI Foundry hub」が「Azure AI Foundry hub」に修正され、Azureプラットフォームとの関連性がより明確になりました。
- 同様に、「AI Foundryプロジェクト」が「Azure AI Foundryプロジェクト」に変更され、一貫性が強化されています。
この用語の修正により、読者は文書の内容をより明確に理解できるようになります。また、Azureに関連するサービスについての表現が統一されることで、全体の明瞭性が向上し、情報が正確に伝わることが期待されます。
この更新は、Azureに関連した文書の用語一貫性を保ち、読者が情報をよりよく理解できるようにするための重要なステップです。
articles/ai-studio/how-to/flow-deploy.md
Diff
@@ -123,7 +123,7 @@ The authentication method for the endpoint. Key-based authentication provides a
#### Identity type
-The endpoint needs to access Azure resources such as the Azure Container Registry or your AI Foundry hub connections for inferencing. You can allow the endpoint permission to access Azure resources via giving permission to its managed identity.
+The endpoint needs to access Azure resources such as the Azure Container Registry or your Azure AI Foundry hub connections for inferencing. You can allow the endpoint permission to access Azure resources via giving permission to its managed identity.
System-assigned identity will be autocreated after your endpoint is created, while user-assigned identity is created by user. [Learn more about managed identities.](/azure/active-directory/managed-identities-azure-resources/overview)
@@ -139,10 +139,10 @@ If you created the associated endpoint with **User Assigned Identity**, the user
|Scope|Role|Why it's needed|
|---|---|---|
-|AI Foundry project|**Azure Machine Learning Workspace Connection Secrets Reader** role **OR** a customized role with `Microsoft.MachineLearningServices/workspaces/connections/listsecrets/action` | Get project connections|
-|AI Foundry project container registry |**ACR pull** |Pull container image |
-|AI Foundry project default storage| **Storage Blob Data Reader**| Load model from storage |
-|AI Foundry project|**Workspace metrics writer**| After you deploy then endpoint, if you want to monitor the endpoint related metrics like CPU/GPU/Disk/Memory utilization, you need to give this permission to the identity.<br/><br/>Optional|
+|Azure AI Foundry project|**Azure Machine Learning Workspace Connection Secrets Reader** role **OR** a customized role with `Microsoft.MachineLearningServices/workspaces/connections/listsecrets/action` | Get project connections|
+|Azure AI Foundry project container registry |**ACR pull** |Pull container image |
+|Azure AI Foundry project default storage| **Storage Blob Data Reader**| Load model from storage |
+|Azure AI Foundry project|**Workspace metrics writer**| After you deploy then endpoint, if you want to monitor the endpoint related metrics like CPU/GPU/Disk/Memory utilization, you need to give this permission to the identity.<br/><br/>Optional|
See detailed guidance about how to grant permissions to the endpoint identity in [Grant permissions to the endpoint](#grant-permissions-to-the-endpoint).
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、flow-deploy.md
ファイルにおいて、用語の一貫性を向上させるための修正が行われました。具体的には、「AI Foundry hub」という表現が「Azure AI Foundry hub」に修正されています。この修正により、Azure関連の文書における用語が統一され、読者にとっての理解が向上します。
主な変更点は以下の通りです:
- エンドポイントがアクセスする必要のあるAzureリソースに関する説明において、「AI Foundry hub」を「Azure AI Foundry hub」に修正。
- 権限の付与に関する表においても、関連する用語がすべて「Azure AI Foundryプロジェクト」に修正されています。
この用語の統一により、文書全体の明瞭性が強化され、特にAzureのサービスに関連する情報の理解が容易になります。また、適切な権限の説明においても一貫性が強化されているため、ユーザーが必要な操作を実施する際に役立つことが期待されます。
全体として、この更新は、Azureに関連する文書の用語の一貫性を確保し、結果として読者が情報を正確に理解しやすくするための重要な修正です。
articles/ai-studio/how-to/healthcare-ai/deploy-cxrreportgen.md
Diff
@@ -1,5 +1,5 @@
---
-title: How to deploy and use CXRReportGen healthcare AI model with AI Foundry
+title: How to deploy and use CXRReportGen healthcare AI model with Azure AI Foundry
titleSuffix: Azure AI Foundry
description: Learn how to use CXRReportGen Healthcare AI Model with Azure AI Foundry.
ms.service: azure-ai-studio
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、deploy-cxrreportgen.md
ファイルにおける用語の一貫性を向上させるための修正です。具体的には、タイトル内の「AI Foundry」という表現が「Azure AI Foundry」に修正されています。この変更により、Azureプラットフォームとの関連性が明確になり、用語の整合性が保たれます。
主な変更点は以下の通りです:
- タイトルでの「AI Foundry」の表記が「Azure AI Foundry」に修正され、全体の文書に対する一貫性が強化されています。
文書内での用語の一貫性を持たせることで、読者が内容をより正確に理解できるようになることが期待されます。この更新は、特にAzureに関連するサービスについての情報を提供する際に、専門性と信頼性を向上させるための重要な修正といえます。
articles/ai-studio/how-to/healthcare-ai/deploy-medimageinsight.md
Diff
@@ -1,5 +1,5 @@
---
-title: How to deploy and use MedImageInsight healthcare AI model with AI Foundry
+title: How to deploy and use MedImageInsight healthcare AI model with Azure AI Foundry
titleSuffix: Azure AI Foundry
description: Learn how to use MedImageInsight Healthcare AI Model with Azure AI Foundry.
ms.service: azure-ai-studio
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、deploy-medimageinsight.md
ファイルにおいて、用語の一貫性を向上させるための修正が行われました。具体的には、タイトル内の「AI Foundry」という表現が「Azure AI Foundry」に変更されています。この変更により、Azureプラットフォームとの関連がより明確になり、用語が整合性を持つようになります。
主な変更点は以下の通りです:
- タイトルでの「AI Foundry」の表記が「Azure AI Foundry」に修正され、全体の文書に対する一貫性が強化されました。
用語の一貫性を保持することで、読者に対する情報の正確性と明瞭性が高まることが期待されます。この更新は、Azureに関連する技術情報を提供する際の専門性と信頼性を向上させる重要な修正と言えます。
articles/ai-studio/how-to/healthcare-ai/deploy-medimageparse.md
Diff
@@ -1,5 +1,5 @@
---
-title: How to deploy and use MedImageParse healthcare AI model with AI Foundry
+title: How to deploy and use MedImageParse healthcare AI model with Azure AI Foundry
titleSuffix: Azure AI Foundry
description: Learn how to use MedImageParse Healthcare AI Model with Azure AI Foundry.
ms.service: azure-ai-studio
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、deploy-medimageparse.md
ファイルについて、用語の一貫性を向上させるための修正です。具体的には、タイトル内の「AI Foundry」が「Azure AI Foundry」に修正されています。この変更によって、Azureプラットフォームとの関連性がより明確となり、文書全体の整合性が強化されます。
主な変更点は以下の通りです:
- タイトルの表記変更により、「AI Foundry」が「Azure AI Foundry」に修正され、全体の用語に対する一貫性が図られています。
この用語の整合性を保つことで、読者が文書を理解しやすくなり、その内容の正確さが向上します。特に、Azure関連の技術情報を提供する場合の専門性や信頼性を高めることが期待される重要な修正です。
articles/ai-studio/how-to/healthcare-ai/healthcare-ai-models.md
Diff
@@ -1,5 +1,5 @@
---
-title: Foundation models for healthcare in AI Foundry portal
+title: Foundation models for healthcare in Azure AI Foundry portal
titleSuffix: Azure AI Foundry
description: Learn about AI models that are applicable to the health and life science industry.
ms.service: azure-ai-studio
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、healthcare-ai-models.md
ファイルにおける用語の一貫性を高めるための修正です。具体的には、タイトルの「AI Foundry」が「Azure AI Foundry」に修正されました。この修正により、Azureプラットフォームに関連するコンテンツの整合性が強化されます。
主な変更点は以下の通りです:
- タイトル内での「AI Foundry」が「Azure AI Foundry」に変更され、情報の提供時における明確さが向上しました。
この用語の統一により、読者がAzureのリソースとサービスに関する情報をより容易に理解できるようになります。また、専門性と信頼性を高めることも期待されるため、重要な修正と言えるでしょう。
articles/ai-studio/how-to/model-catalog-overview.md
Diff
@@ -165,21 +165,21 @@ Pay-per-token billing is available only to users whose Azure subscription belong
### Network isolation for models deployed via serverless APIs
-Managed computes for models deployed as serverless APIs follow the public network access flag setting of the AI Foundry hub that has the project in which the deployment exists. To help secure your managed compute, disable the public network access flag on your AI Foundry hub. You can help secure inbound communication from a client to your managed compute by using a private endpoint for the hub.
+Managed computes for models deployed as serverless APIs follow the public network access flag setting of the Azure AI Foundry hub that has the project in which the deployment exists. To help secure your managed compute, disable the public network access flag on your Azure AI Foundry hub. You can help secure inbound communication from a client to your managed compute by using a private endpoint for the hub.
-To set the public network access flag for the AI Foundry hub:
+To set the public network access flag for the Azure AI Foundry hub:
* Go to the [Azure portal](https://ms.portal.azure.com/).
-* Search for the resource group to which the hub belongs, and select your AI Foundry hub from the resources listed for this resource group.
+* Search for the resource group to which the hub belongs, and select your Azure AI Foundry hub from the resources listed for this resource group.
* On the hub overview page, on the left pane, go to **Settings** > **Networking**.
* On the **Public access** tab, you can configure settings for the public network access flag.
* Save your changes. Your changes might take up to five minutes to propagate.
#### Limitations
-* If you have an AI Foundry hub with a managed compute created before July 11, 2024, managed computes added to projects in this hub won't follow the networking configuration of the hub. Instead, you need to create a new managed compute for the hub and create new serverless API deployments in the project so that the new deployments can follow the hub's networking configuration.
+* If you have an Azure AI Foundry hub with a managed compute created before July 11, 2024, managed computes added to projects in this hub won't follow the networking configuration of the hub. Instead, you need to create a new managed compute for the hub and create new serverless API deployments in the project so that the new deployments can follow the hub's networking configuration.
-* If you have an AI Foundry hub with MaaS deployments created before July 11, 2024, and you enable a managed compute on this hub, the existing MaaS deployments won't follow the hub's networking configuration. For serverless API deployments in the hub to follow the hub's networking configuration, you need to create the deployments again.
+* If you have an Azure AI Foundry hub with MaaS deployments created before July 11, 2024, and you enable a managed compute on this hub, the existing MaaS deployments won't follow the hub's networking configuration. For serverless API deployments in the hub to follow the hub's networking configuration, you need to create the deployments again.
* Currently, [Azure OpenAI On Your Data](/azure/ai-services/openai/concepts/use-your-data) support isn't available for MaaS deployments in private hubs, because private hubs have the public network access flag disabled.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性のための修正"
}
Explanation
この変更は、model-catalog-overview.md
ファイル内の用語を統一するための修正です。変更内容の主なポイントは、すべての「AI Foundry」という表現を「Azure AI Foundry」に統一したことです。これにより、Azureプラットフォームに関連する情報の明確さと整合性が向上します。
主な変更点は以下の通りです:
- 記述中の「AI Foundry」という用語を「Azure AI Foundry」に変更することにより、一貫性を持たせました。
- 具体的には、ネットワーク設定や制限事項に関する説明の中で、すべての関連項目が修正されています。
この用語修正によって、読者はAzureに関連する情報をより正確に理解でき、関連するサービスや機能についての信頼性が高まることが期待されます。特に、技術的な文書では正確な用語使用が重要なため、この修正は価値のあるものといえるでしょう。
articles/ai-studio/how-to/monitor-quality-safety.md
Diff
@@ -206,7 +206,7 @@ credential = DefaultAzureCredential()
# Update your azure resources details
subscription_id = "INSERT YOUR SUBSCRIPTION ID"
resource_group = "INSERT YOUR RESOURCE GROUP NAME"
-project_name = "INSERT YOUR PROJECT NAME" # This is the same as your AI Foundry project name
+project_name = "INSERT YOUR PROJECT NAME" # This is the same as your Azure AI Foundry project name
endpoint_name = "INSERT YOUR ENDPOINT NAME" # This is your deployment name without the suffix (e.g., deployment is "contoso-chatbot-1", endpoint is "contoso-chatbot")
deployment_name = "INSERT YOUR DEPLOYMENT NAME"
aoai_deployment_name ="INSERT YOUR AOAI DEPLOYMENT NAME"
@@ -373,7 +373,7 @@ credential = DefaultAzureCredential()
# Update your azure resources details
subscription_id = "INSERT YOUR SUBSCRIPTION ID"
resource_group = "INSERT YOUR RESOURCE GROUP NAME"
-project_name = "INSERT YOUR PROJECT NAME" # This is the same as your AI Foundry project name
+project_name = "INSERT YOUR PROJECT NAME" # This is the same as your Azure AI Foundry project name
endpoint_name = "INSERT YOUR ENDPOINT NAME" # This is your deployment name without the suffix (e.g., deployment is "contoso-chatbot-1", endpoint is "contoso-chatbot")
deployment_name = "INSERT YOUR DEPLOYMENT NAME"
@@ -450,7 +450,7 @@ credential = DefaultAzureCredential()
# Update your azure resources details
subscription_id = "INSERT YOUR SUBSCRIPTION ID"
resource_group = "INSERT YOUR RESOURCE GROUP NAME"
-project_name = "INSERT YOUR PROJECT NAME" # This is the same as your AI Foundry project name
+project_name = "INSERT YOUR PROJECT NAME" # This is the same as your Azure AI Foundry project name
endpoint_name = "INSERT YOUR ENDPOINT NAME" # This is your deployment name without the suffix (e.g., deployment is "contoso-chatbot-1", endpoint is "contoso-chatbot")
deployment_name = "INSERT YOUR DEPLOYMENT NAME"
aoai_deployment_name ="INSERT YOUR AOAI DEPLOYMENT NAME"
@@ -535,7 +535,7 @@ model_monitor = MonitorSchedule(
ml_client.schedules.begin_create_or_update(model_monitor)
```
-After you create your monitor from the SDK, you can [consume the monitoring results](#consume-monitoring-results) in AI Foundry portal.
+After you create your monitor from the SDK, you can [consume the monitoring results](#consume-monitoring-results) in Azure AI Foundry portal.
## Related content
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性と正確性の向上"
}
Explanation
この変更は、monitor-quality-safety.md
ファイル内の用語を統一し、正確性を向上させるための修正です。具体的には、「AI Foundry」という表現を全て「Azure AI Foundry」に変更しています。これにより、読者がAzureプラットフォームのサービスを正しく認識できるようになります。
主な変更点は以下の通りです:
- プロジェクト名の説明において、「AI Foundry」という表現を「Azure AI Foundry」に修正しました。
- 同様の修正が、SDKを使用してモニターを作成した後の文言にも反映されています。
これにより、一貫した用語の使用が保証され、言及されているプロジェクトやサービスの理解が容易になります。また、この修正は、Azureとその関連リソースに対する信頼性を高めることで、ユーザーにとって重要な影響を与えます。重要な技術文書における正確な表現は、混乱を避け、ユーザーの体験を向上させる役割を果たしています。
articles/ai-studio/how-to/online-evaluation.md
Diff
@@ -228,7 +228,7 @@ app_insights_config = ApplicationInsightsConfiguration(
deployment_name = "gpt-4"
api_version = "2024-08-01-preview"
-# This is your AOAI connection name, which can be found in your AI Foundry project under the 'Models + Endpoints' tab
+# This is your AOAI connection name, which can be found in your Azure AI Foundry project under the 'Models + Endpoints' tab
default_connection = project_client.connections._get_connection(
"aoai_connection_name"
)
@@ -245,7 +245,7 @@ Next, configure the evaluators you wish to use:
```python
# RelevanceEvaluator
-# id for each evaluator can be found in your AI Foundry registry - please see documentation for more information
+# id for each evaluator can be found in your Azure AI Foundry registry - please see documentation for more information
# init_params is the configuration for the model to use to perform the evaluation
# data_mapping is used to map the output columns of your query to the names required by the evaluator
relevance_evaluator_config = EvaluatorConfiguration(
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上のための修正"
}
Explanation
この変更は、online-evaluation.md
ファイルにおける用語の統一を目的とした修正です。具体的には、「AI Foundry」という表現をすべて「Azure AI Foundry」に変更しました。これにより、Azureプラットフォームに関連する情報の明確性が向上します。
主な変更点は以下の通りです:
- AOAI接続名に関するコメント文が修正され、「AI Foundry」から「Azure AI Foundry」へと変更されました。
- 評価者のIDに関する説明でも同様に用語を統一し、情報の正確さを確保しました。
この修正は、読者がAzure AI Foundryプロジェクトの設定や評価者の利用方法をより正確に理解できるようにし、文書の整合性を高めることを目的としています。特に技術的な文書では、一貫した用語使用が重要であり、これによってユーザーの混乱を避け、スムーズな理解を促進します。
articles/ai-studio/how-to/prompt-flow-tools/azure-open-ai-gpt-4v-tool.md
Diff
@@ -22,7 +22,7 @@ The prompt flow Azure OpenAI GPT-4 Turbo with Vision tool enables you to use you
## Prerequisites
- An Azure subscription. <a href="https://azure.microsoft.com/free/cognitive-services" target="_blank">You can create one for free</a>.
-- An [AI Foundry hub](../../how-to/create-azure-ai-resource.md) with a GPT-4 Turbo with Vision model deployed in [one of the regions that support GPT-4 Turbo with Vision](../../../ai-services/openai/concepts/models.md#model-summary-table-and-region-availability). When you deploy from your project's **Deployments** page, select `gpt-4` as the model name and `vision-preview` as the model version.
+- An [Azure AI Foundry hub](../../how-to/create-azure-ai-resource.md) with a GPT-4 Turbo with Vision model deployed in [one of the regions that support GPT-4 Turbo with Vision](../../../ai-services/openai/concepts/models.md#model-summary-table-and-region-availability). When you deploy from your project's **Deployments** page, select `gpt-4` as the model name and `vision-preview` as the model version.
## Build with the Azure OpenAI GPT-4 Turbo with Vision tool
Summary
{
"modification_type": "minor update",
"modification_title": "用語の正確性向上"
}
Explanation
この変更は、azure-open-ai-gpt-4v-tool.md
ファイル内の用語を明確にするための修正です。具体的には、「AI Foundry hub」という表現を「Azure AI Foundry hub」に変更し、Azureのブランド名を明確にしています。これにより、読者が正確にAzureのリソースを識別できるようになります。
主な変更点は以下の通りです:
- 「AI Foundry hub」を「Azure AI Foundry hub」に修正することで、プラットフォームの正確な名称を使用しています。
このような修正は、技術文書において用語の一貫性と正確性を保つために重要であり、ユーザーがAzure関連のサービスやリソースを理解する手助けとなります。正確な情報提供は、読者の混乱を避け、正しい手順に従うための基礎を築くことに寄与します。
articles/ai-studio/how-to/prompt-flow-tools/serp-api-tool.md
Diff
@@ -37,7 +37,7 @@ To create a Serp connection:
- `azureml.flow.module`: `promptflow.connections`
- `api_key`: Your Serp API key. You must select the **is secret** checkbox to keep the API key secure.
- :::image type="content" source="../../media/prompt-flow/serp-custom-connection-keys.png" alt-text="Screenshot that shows adding extra information to a custom connection in AI Foundry portal." lightbox = "../../media/prompt-flow/serp-custom-connection-keys.png":::
+ :::image type="content" source="../../media/prompt-flow/serp-custom-connection-keys.png" alt-text="Screenshot that shows adding extra information to a custom connection in Azure AI Foundry portal." lightbox = "../../media/prompt-flow/serp-custom-connection-keys.png":::
The connection is the model used to establish connections with the Serp API. Get your API key from the Serp API account dashboard.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、serp-api-tool.md
ファイルにおいて「AI Foundry portal」という表現を「Azure AI Foundry portal」に修正することによって、用語の一貫性を高めることを目的としています。具体的には、Azureプラットフォームに関連するリソースやポータルの名称を明示的に示すことで、読者の混乱を防ぎます。
主な変更点は以下の通りです:
- スクリーンショットの説明内で、「AI Foundry portal」という言葉を「Azure AI Foundry portal」に変更しました。
このような修正は、文書の正確性を高めるだけでなく、Azure関連のサービスやツールを利用しようとしている読者にとって重要な情報を提供します。正確な用語の使用は、ユーザーが必要なリソースを特定しやすくし、効率的に作業を行うための助けとなります。
articles/ai-studio/how-to/prompt-flow-troubleshoot.md
Diff
@@ -96,7 +96,7 @@ If you regenerate your Azure OpenAI key and manually update the connection used
This is because the connections used in the endpoints/deployments won't be automatically updated. Any change for key or secrets in deployments should be done by manual update, which aims to avoid impacting online production deployment due to unintentional offline operation.
-- If the endpoint was deployed in the AI Foundry portal, you can just redeploy the flow to the existing endpoint using the same deployment name.
+- If the endpoint was deployed in the Azure AI Foundry portal, you can just redeploy the flow to the existing endpoint using the same deployment name.
- If the endpoint was deployed using SDK or CLI, you need to make some modification to the deployment definition such as adding a dummy environment variable, and then use `az ml online-deployment update` to update your deployment.
### Vulnerability issues in prompt flow deployments
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、prompt-flow-troubleshoot.md
ファイルにおいて、「AI Foundry portal」という表現を「Azure AI Foundry portal」に修正することによって、用語の一貫性を高めることを目的としています。これにより、Azure関連のサービスやプラットフォームにおける名称を正確に表記し、読者の混乱を軽減させることが期待されます。
主な変更点は以下の通りです:
- 「AI Foundry portal」を「Azure AI Foundry portal」に修正しました。
このような修正は文書の正確性を向上させ、Azureの関連リソースを利用する際に読者がより容易に理解できるよう手助けします。正確な用語を使用することにより、ユーザーが必要な情報をスムーズに得られる状況を作り出し、全体的なドキュメントの品質を向上させる効果があります。
articles/ai-studio/how-to/secure-data-playground.md
Diff
@@ -18,7 +18,7 @@ zone_pivot_groups: azure-ai-studio-sdk-cli
Use this article to learn how to securely use Azure AI Foundry's playground chat on your data. The following sections provide our recommended configuration to protect your data and resources by using Microsoft Entra ID role-based access control, a managed network, and private endpoints. We recommend disabling public network access for Azure OpenAI resources, Azure AI Search resources, and storage accounts. Using selected networks with IP rules isn't supported because the services' IP addresses are dynamic.
> [!NOTE]
-> AI Foundry's managed virtual network settings apply only to AI Foundry's managed compute resources, not platform as a service (PaaS) services like Azure OpenAI or Azure AI Search. When using PaaS services, there is no data exfiltration risk because the services are managed by Microsoft.
+> Azure AI Foundry's managed virtual network settings apply only to Azure AI Foundry's managed compute resources, not platform as a service (PaaS) services like Azure OpenAI or Azure AI Search. When using PaaS services, there is no data exfiltration risk because the services are managed by Microsoft.
The following table summarizes the changes made in this article:
@@ -31,13 +31,13 @@ The following table summarizes the changes made in this article:
## Prerequisites
-Ensure that the AI Foundry hub is deployed with the __Identity-based access__ setting for the Storage account. This configuration is required for the correct access control and security of your AI Foundry Hub. You can verify this configuration using one of the following methods:
+Ensure that the Azure AI Foundry hub is deployed with the __Identity-based access__ setting for the Storage account. This configuration is required for the correct access control and security of your Azure AI Foundry Hub. You can verify this configuration using one of the following methods:
- In the Azure portal, select the hub and then select __Settings__, __Properties__, and __Options__. At the bottom of the page, verify that __Storage account access type__ is set to __Identity-based access__.
- If deploying using Azure Resource Manager or Bicep templates, include the `systemDatastoresAuthMode: 'identity'` property in your deployment template.
- You must be familiar with using Microsoft Entra ID role-based access control to assign roles to resources and users. For more information, visit the [Role-based access control](/azure/role-based-access-control/overview) article.
-## Configure Network Isolated AI Foundry Hub
+## Configure Network Isolated Azure AI Foundry Hub
If you're __creating a new Azure AI Foundry hub__, use one of the following documents to create a hub with network isolation:
@@ -214,9 +214,9 @@ For more information on assigning roles, see [Tutorial: Grant a user access to r
| Azure Storage Account | Storage File Data Privileged Contributor | Developer's Microsoft Entra ID | Needed to Access File Share in Storage for Promptflow data. |
| The resource group or Azure subscription where the developer need to deploy the web app to | Contributor | Developer's Microsoft Entra ID | Deploy web app to the developer's Azure subscription. |
-## Use your data in AI Foundry portal
+## Use your data in Azure AI Foundry portal
-Now, the data you add to AI Foundry is secured to the isolated network provided by your Azure AI Foundry hub and project. For an example of using data, visit the [build a question and answer copilot](../tutorials/deploy-copilot-ai-studio.md) tutorial.
+Now, the data you add to Azure AI Foundry is secured to the isolated network provided by your Azure AI Foundry hub and project. For an example of using data, visit the [build a question and answer copilot](../tutorials/deploy-copilot-ai-studio.md) tutorial.
## Deploy web apps
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上と明確化"
}
Explanation
この変更は、secure-data-playground.md
ファイルにおいて「AI Foundry」という用語を「Azure AI Foundry」に統一することによって、用語の一貫性を高めることを目的としています。また、ドキュメント内の説明を明確にすることで、読者が内容を理解しやすくなるようにしています。
主な変更点は以下の通りです:
- 様々な箇所で「AI Foundry」を「Azure AI Foundry」に修正しました。
- 記述を更新し、Azure AI Foundryに関連するコンテキストを明確にしました。
この修正は、ドキュメントの透明性と理解を促進し、Azureのサービスに関する情報が明確に伝わるようにするための重要なステップです。利用者は、必要な設定やセキュリティ対策をより効果的に理解し、実施できるようになります。正確な名称の利用は、Azure環境での作業において重要な要素です。
articles/ai-studio/how-to/troubleshoot-deploy-and-monitor.md
Diff
@@ -59,7 +59,7 @@ To fix this error, take the following steps to manually assign the ML Data scien
1. Select your endpoint's name.
1. Select **Select**.
1. Select **Review + Assign**.
-1. Return to your project in AI Foundry portal and select **Deployments** from the left navigation menu.
+1. Return to your project in Azure AI Foundry portal and select **Deployments** from the left navigation menu.
1. Select your deployment.
1. Test the prompt flow deployment.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、troubleshoot-deploy-and-monitor.md
ファイルにおいて「AI Foundry」という用語を「Azure AI Foundry」に修正することによって、用語の一貫性を確保することを目的としています。具体的には、手順の中でプロジェクトに戻った際の指示が更新されています。
主な変更点は以下の通りです:
- 手順の1つ目に含まれる「AI Foundry portal」という表現を「Azure AI Foundry portal」に修正しました。
この修正により、ドキュメントの中で一貫した用語が使用され、読者がAzureに関連するリソースを理解しやすくなります。正確な名称の使用は情報の透明性を高め、ユーザーが正確に手順を追えるようにするための重要な要素です。このような改善は、技術ドキュメントにおける読者体験を向上させます。
articles/ai-studio/how-to/troubleshoot-secure-connection-project.md
Diff
@@ -131,6 +131,6 @@ Try the following steps to troubleshoot:
1. In Azure Portal, check the network settings of the storage account that is associated to your hub.
* If public network access is set to __Enabled from selected virtual networks and IP addresses__, ensure the correct IP address ranges are added to access your storage account.
* If public network access is set to __Disabled__, ensure you have a private endpoint configured from your Azure virtual network to your storage account with Target sub-resource as blob. In addition, you must grant the [Reader](/azure/role-based-access-control/built-in-roles#reader) role for the storage account private endpoint to the managed identity.
-2. In Azure Portal, navigate to your AI Foundry hub. Ensure the managed virtual network is provisioned and the outbound private endpoint to blob storage is Active. For more on provisioning the managed virtual network, see [How to configure a managed network for Azure AI Foundry hubs](configure-managed-network.md).
-3. Navigate to AI Foundry > your project > project settings.
+2. In Azure Portal, navigate to your Azure AI Foundry hub. Ensure the managed virtual network is provisioned and the outbound private endpoint to blob storage is Active. For more on provisioning the managed virtual network, see [How to configure a managed network for Azure AI Foundry hubs](configure-managed-network.md).
+3. Navigate to Azure AI Foundry > your project > project settings.
4. Refresh the page. A number of connections should be created including 'workspaceblobstore'.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上と明確化"
}
Explanation
この変更は、troubleshoot-secure-connection-project.md
ファイルにおいて「AI Foundry」という用語を「Azure AI Foundry」に修正することによって、用語の一貫性を向上させることを目的としています。また、手順の表現を明確にすることも意図されています。
主な変更点は以下の通りです:
- 手順の2および3において「AI Foundry」を「Azure AI Foundry」に修正し、一貫した呼称を使用するようにしました。
この修正により、読者はAzureに関連するリソースやプロジェクトに関する指示をより理解しやすくなります。正確な名称の使用は、ドキュメントの整合性を保ち、ユーザーが手順を正確に追えるようにするために重要です。このような改善は、技術的な指導がより効果的であることを保証し、ユーザー体験の向上につながります。
articles/ai-studio/how-to/use-blocklists.md
Diff
@@ -1,5 +1,5 @@
---
-title: Use blocklists in AI Foundry portal
+title: Use blocklists in Azure AI Foundry portal
titleSuffix: Azure AI Foundry
description: Learn how to create custom blocklists in Azure AI Foundry portal as part of your content filtering configurations.
manager: nitinme
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、use-blocklists.md
ファイルにおいてタイトルを修正し、「AI Foundry」を「Azure AI Foundry」に統一しています。この調整により、利用者が関連するサービスを誤解することを防ぎ、ドキュメント全体の用語の一貫性を高めることが目的です。
変更内容の詳細は以下の通りです:
- タイトルの「Use blocklists in AI Foundry portal」を「Use blocklists in Azure AI Foundry portal」に書き換えています。
この修正によって、Azure AI Foundryに関する情報を探しているユーザーにとって、正確かつ明確な内容が提供され、理解しやすくなっています。正しい名称の使用は、情報の明瞭さを向上させ、ドキュメント全体の信頼性を強化するために重要です。
articles/ai-studio/includes/create-env-file-tutorial.md
Diff
@@ -23,7 +23,7 @@ CHAT_MODEL="gpt-4o-mini"
EVALUATION_MODEL="gpt-4o-mini"
```
-* Find your connection string in the Azure AI Foundry project you created in the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md). Open the project, then find the connection string on the **Overview** page. Copy the connection string and paste it into the `.env` file.
+* Find your connection string in the Azure AI Foundry project you created in the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md). Open the project, then find the connection string on the **Overview** page. Copy the connection string and paste it into the `.env` file.
:::image type="content" source="../media/quickstarts/azure-ai-sdk/connection-string.png" alt-text="Screenshot shows the overview page of a project and the location of the connection string.":::
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、create-env-file-tutorial.md
ファイルにおいて、手順内の表現を更新し、用語の一貫性を向上させることを目的としています。具体的には、AI Foundryに関連するプロジェクトの名称をより明確にするために、「AI Foundry playground」を「Azure AI Foundry playground」に修正しました。
変更内容の詳細は以下の通りです:
- 手順での「AI Foundry playground」を「Azure AI Foundry playground」に改め、正確なサービス名を使用しています。
この修正により、ユーザーは関係するリソースをより正確に理解できるようになり、混乱を避けることが可能になります。用語の一貫した使用は、技術文書の整合性を高め、読者が提供されている情報をよりよく理解できるようにするために重要です。
articles/ai-studio/includes/create-env-file.md
Diff
@@ -18,7 +18,7 @@ Create a `.env` file, and paste the following code:
PROJECT_CONNECTION_STRING=<your-connection-string>
```
-You find your connection string in the Azure AI Foundry project you created in the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md). Open the project, then find the connection string on the **Overview** page. Copy the connection string and paste it into the `.env` file.
+You find your connection string in the Azure AI Foundry project you created in the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md). Open the project, then find the connection string on the **Overview** page. Copy the connection string and paste it into the `.env` file.
:::image type="content" source="../media/quickstarts/azure-ai-sdk/connection-string.png" alt-text="Screenshot shows the overview page of a project and the location of the connection string.":::
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、create-env-file.md
ファイルにおいて、接続文字列の取得に関する説明を修正し、用語の一貫性を向上させることを目指しています。具体的には、「AI Foundry playground」という名称が「Azure AI Foundry playground」に修正され、正確なサービス名の使用が反映されています。
変更内容の詳細は以下の通りです:
- 文中の「AI Foundry playground」を「Azure AI Foundry playground」に修正しました。
この修正により、ユーザーは関連するリソースや手順を誤解することなく、正確に理解できるようになります。用語の一貫性は、技術文書の信頼性を向上させ、読者が提供された情報を効果的に活用できるようにするために重要です。
articles/ai-studio/index.yml
Diff
@@ -66,7 +66,7 @@ landingContent:
links:
- text: Get started with the Azure AI SDKs
url: how-to/develop/sdk-overview.md
- - text: Work with AI Foundry projects in VS Code
+ - text: Work with Azure AI Foundry projects in VS Code
url: how-to/develop/vscode.md
- linkListType: tutorial
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、index.yml
ファイル内のリンクテキストを修正し、用語の一貫性を向上させることを目的としています。具体的には、「AI Foundryプロジェクト」という表現が「Azure AI Foundryプロジェクト」に変更され、ブランド名が正確に反映されています。
変更内容の詳細は以下の通りです:
- リスト内のリンクテキスト「Work with AI Foundry projects in VS Code」が「Work with Azure AI Foundry projects in VS Code」に修正されました。
この修正により、関連するリソースの正確な名称を使用することで、ユーザーはより明確に情報を理解できるようになります。用語の一貫性は、技術文書の信頼性を高め、読者が情報を効果的に利用できるようにするために重要です。
articles/ai-studio/quickstarts/get-started-code.md
Diff
@@ -20,7 +20,7 @@ In this quickstart, we walk you through setting up your local development enviro
## Prerequisites
-* Before you can follow this quickstart, complete the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md) to deploy a **gpt-4o-mini** model into a project.
+* Before you can follow this quickstart, complete the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md) to deploy a **gpt-4o-mini** model into a project.
## Install the Azure CLI and sign in
@@ -48,7 +48,7 @@ Create a file named **chat.py**. Copy and paste the following code into it.
Your project connection string is required to call the Azure OpenAI service from your code.
-Find your connection string in the Azure AI Foundry project you created in the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md). Open the project, then find the connection string on the **Overview** page.
+Find your connection string in the Azure AI Foundry project you created in the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md). Open the project, then find the connection string on the **Overview** page.
:::image type="content" source="../media/quickstarts/azure-ai-sdk/connection-string.png" alt-text="Screenshot shows the overview page of a project and the location of the connection string.":::
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、get-started-code.md
ファイルにおいて、接続文字列の取得手順および前提条件に関する表現を修正し、用語の一貫性を高めています。具体的には、「AI Foundry playground」という名称が「Azure AI Foundry playground」に修正されています。
変更内容の詳細は以下の通りです:
- 前提条件の部分でのリンクテキストが「AI Foundry playground quickstart」から「Azure AI Foundry playground quickstart」に変更されました。
- 接続文字列の取得に関するセクションでも、同様に「AI Foundry playground」という表現が「Azure AI Foundry playground」に修正されました。
この修正により、ユーザーは関連するリソースについての理解を深め、手順を実行する際に混乱を避けることができます。用語の一貫性は、技術文書の明確さを向上させ、読者が情報を効果的に活用できるようにするために重要です。
articles/ai-studio/quickstarts/hear-speak-playground.md
Diff
@@ -15,7 +15,7 @@ ms.author: eur
author: eric-urban
---
-# Quickstart: Hear and speak with chat models in the AI Foundry portal chat playground
+# Quickstart: Hear and speak with chat models in the Azure AI Foundry portal chat playground
In the chat playground in Azure AI Foundry portal, you can use speech to text and text to speech features to interact with chat models. You can try the same model that you use for text-based chat in a speech-based chat. It's just another way to interact with the model.
@@ -24,20 +24,20 @@ In this quickstart, you use Azure OpenAI Service and Azure AI Speech to:
- Speak to the assistant via speech to text.
- Hear the assistant's response via text to speech.
-The speech to text and text to speech features can be used together or separately in the AI Foundry portal chat playground. You can use the playground to test your chat model before deploying it.
+The speech to text and text to speech features can be used together or separately in the Azure AI Foundry portal chat playground. You can use the playground to test your chat model before deploying it.
## Prerequisites
- An Azure subscription - <a href="https://azure.microsoft.com/free/cognitive-services" target="_blank">Create one for free</a>.
-- An [AI Foundry project](../how-to/create-projects.md).
+- An [Azure AI Foundry project](../how-to/create-projects.md).
- A deployed [Azure OpenAI](../how-to/deploy-models-openai.md) chat model. This guide is tested with a `gpt-4o-mini` model.
## Configure the chat playground
Before you can start a chat session, you need to configure the chat playground to use the speech to text and text to speech features.
1. Sign in to [Azure AI Foundry](https://ai.azure.com).
-1. Go to your AI Foundry project. If you need to create a project, see [Create an AI Foundry project](../how-to/create-projects.md).
+1. Go to your Azure AI Foundry project. If you need to create a project, see [Create an Azure AI Foundry project](../how-to/create-projects.md).
1. Select **Playgrounds** from the left pane and then select a playground to use. In this example, select **Try the chat playground**.
1. Select your deployed chat model from the **Deployment** dropdown.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、hear-speak-playground.md
ファイル内の表現を修正し、用語の一貫性を向上させることを目的としています。具体的には、「AI Foundryポータル」の表現が「Azure AI Foundryポータル」に統一されています。
変更内容の詳細は以下の通りです:
- タイトルおよび本文の各所に出現する「AI Foundry」という表現を「Azure AI Foundry」に変更しました。
- 特定の手順や前提条件においても、同様に「AI Foundryプロジェクト」が「Azure AI Foundryプロジェクト」に変更されています。
これにより、ユーザーは製品名の正確な使用を通じて、サービスに対しての理解を深めることができ、ガイドの信頼性が向上します。用語の一貫性は、技術文書において重要であり、読者が情報を効果的に活用できるようにするために役立ちます。
articles/ai-studio/quickstarts/multimodal-vision.md
Diff
@@ -31,7 +31,7 @@ Extra usage fees might apply when using GPT-4 Turbo with Vision and Azure AI Vis
- An Azure subscription - <a href="https://azure.microsoft.com/free/cognitive-services" target="_blank">Create one for free</a>.
- Once you have your Azure subscription, <a href="/azure/ai-services/openai/how-to/create-resource?pivots=web-portal" title="Create an Azure OpenAI resource." target="_blank">create an Azure OpenAI resource </a>.
-- An [AI Foundry hub](../how-to/create-azure-ai-resource.md) with your Azure OpenAI resource added as a connection.
+- An [Azure AI Foundry hub](../how-to/create-azure-ai-resource.md) with your Azure OpenAI resource added as a connection.
## Prepare your media
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、multimodal-vision.md
ファイルにおける「AI Foundry hub」の表現を「Azure AI Foundry hub」に修正し、用語の一貫性を向上させることを目的としています。
具体的な変更は以下の通りです:
- 「AI Foundry hub」という表現を「Azure AI Foundry hub」に変更しました。
これにより、サービス名の使用が一貫性を持つようになり、ユーザーにとってより明確で正確な情報が提供されます。また、用語の一貫性は、技術文書の信頼性を高め、読者が内容を正しく理解するために重要です。
articles/ai-studio/reference/region-support.md
Diff
@@ -53,7 +53,7 @@ Azure AI Foundry is currently not available in Azure Government regions or air-g
For information on the availability of Azure OpenAI models, see [Azure OpenAI Model summary table and region availability](../../ai-services/openai/concepts/models.md#model-summary-table-and-region-availability).
> [!NOTE]
-> Some models might not be available within the AI Foundry model catalog.
+> Some models might not be available within the Azure AI Foundry model catalog.
For more information, see [Azure OpenAI quotas and limits](/azure/ai-services/openai/quotas-limits).
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、region-support.md
ファイルの内容を修正し、用語の一貫性を向上させることを目的としています。具体的には、「AI Foundry model catalog」の表現を「Azure AI Foundry model catalog」に修正しました。
変更の具体的な内容は以下の通りです:
- 注意書き内の表現を「AI Foundry model catalog」から「Azure AI Foundry model catalog」に変更しました。
この更新により、サービス名の正確な使用が促進されており、読者に対して情報がより明確に伝わるようになります。用語の一貫性は、ドキュメントの信頼性を向上させ、ユーザーが内容を正しく理解しやすくするために重要です。
articles/ai-studio/toc.yml
Diff
@@ -8,7 +8,7 @@ items:
href: what-is-ai-studio.md
- name: Azure AI Foundry architecture
href: concepts/architecture.md
- - name: Azure OpenAI in AI Foundry
+ - name: Azure OpenAI in Azure AI Foundry
href: azure-openai-in-ai-studio.md
- name: Management center
href: concepts/management-center.md
@@ -51,14 +51,14 @@ items:
items:
- name: What are AI services?
href: ../ai-services/what-are-ai-services.md?context=/azure/ai-studio/context/context
- - name: Use Azure AI services in AI Foundry portal
+ - name: Use Azure AI services in Azure AI Foundry portal
href: ai-services/how-to/connect-ai-services.md
- name: Azure OpenAI
items:
- name: What is Azure OpenAI?
href: ../ai-services/openai/overview.md?context=/azure/ai-studio/context/context
displayName: cognitive
- - name: Use Azure OpenAI Service in AI Foundry portal
+ - name: Use Azure OpenAI Service in Azure AI Foundry portal
href: ai-services/how-to/connect-azure-openai.md
- name: Deploy Azure OpenAI models
href: how-to/deploy-models-openai.md
@@ -81,7 +81,7 @@ items:
href: ../ai-services/speech-service/pronunciation-assessment-tool.md?context=/azure/ai-studio/context/context
- name: Hear and speak with chat in the playground
href: quickstarts/hear-speak-playground.md
- - name: Fine-tune in AI Foundry portal for custom speech
+ - name: Fine-tune in Azure AI Foundry portal for custom speech
href: ../ai-services/speech-service/custom-speech-ai-foundry-portal.md?context=/azure/ai-studio/context/context
- name: Explore and select AI models
items:
@@ -250,9 +250,9 @@ items:
displayName: code,sdk
- name: Develop generative AI apps
items:
- - name: Develop generative AI apps in AI Foundry portal
+ - name: Develop in Azure AI Foundry portal
items:
- - name: Build apps with prompt flow in AI Foundry portal
+ - name: Build apps with prompt flow
items:
- name: Prompt flow overview
href: how-to/prompt-flow.md
@@ -266,7 +266,7 @@ items:
href: how-to/flow-tune-prompts-using-variants.md
- name: Process images in a flow
href: how-to/flow-process-image.md
- - name: Use prompt flow tools in AI Foundry portal
+ - name: Use prompt flow tools
items:
- name: Prompt flow tools overview
href: how-to/prompt-flow-tools/prompt-flow-tools-overview.md
@@ -290,9 +290,9 @@ items:
href: how-to/prompt-flow-tools/serp-api-tool.md
- name: Troubleshoot prompt flow
href: how-to/prompt-flow-troubleshoot.md
- - name: Develop generative AI apps using code
+ - name: Develop with code
items:
- - name: Work with AI Foundry projects in VS Code
+ - name: Work with projects in VS Code
href: how-to/develop/vscode.md
- name: Start with an AI template
href: how-to/develop/ai-template-get-started.md
@@ -319,19 +319,19 @@ items:
href: concepts/evaluation-approach-gen-ai.md
- name: Evaluation and monitoring metrics for generative AI
href: concepts/evaluation-metrics-built-in.md
- - name: Manually evaluate prompts in Azure AI Foundry portal playground
+ - name: Manually evaluate prompts in the playground
href: how-to/evaluate-prompts-playground.md
- name: Generate synthetic and simulated data for evaluation
href: how-to/develop/simulator-interaction-data.md
- name: Evaluate with the Azure AI Evaluation SDK
href: how-to/develop/evaluate-sdk.md
displayName: code,accuracy,metrics
- - name: Run evaluations from Azure AI Foundry UI
+ - name: Run evaluations from the portal
href: how-to/evaluate-generative-ai-app.md
- - name: View evaluation results in Azure AI Foundry portal
+ - name: View evaluation results in the portal
href: how-to/evaluate-results.md
displayName: accuracy,metrics
- - name: Evaluate flows in AI Foundry portal
+ - name: Evaluate flows in the portal
items:
- name: Submit batch run and evaluate a flow
href: how-to/flow-bulk-test-evaluation.md
@@ -409,7 +409,7 @@ items:
href: responsible-use-of-ai-overview.md
- name: What is Azure AI Content Safety?
href: ai-services/content-safety-overview.md
- - name: Use Azure AI Content Safety in AI Foundry portal
+ - name: Use Azure AI Content Safety in the portal
href: ai-services/how-to/content-safety.md
- name: Content filtering
href: concepts/content-filtering.md
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、toc.yml
ファイルにおける用語の一貫性を向上させることを目的とした修正です。具体的には、「AI Foundry」という表現を「Azure AI Foundry」に統一し、関連するリンクのテキストにも同様の変更が行われました。
主な変更点は以下の通りです:
- 複数の場所で「AI Foundry」を「Azure AI Foundry」に変更しました。
- ユーザー向けの説明において、「AI Foundry portal」と表現されていた部分も「Azure AI Foundry portal」から「portal」への変更を伴い簡略化されています。
これにより、文書全体の用語が一貫性を持つようになり、読者が情報を理解しやすくなります。また、文書内の関連性が強調され、読者は必要な情報を迅速に見つけることができるようになります。用語の一貫性は、技術文書の信頼性を高め、ユーザーエクスペリエンスを向上させるために重要です。
articles/ai-studio/tutorials/copilot-sdk-create-resources.md
Diff
@@ -55,7 +55,7 @@ To create a project in [Azure AI Foundry](https://ai.azure.com), follow these st
You need two models to build a RAG-based chat app: an Azure OpenAI chat model (`gpt-4o-mini`) and an Azure OpenAI embedding model (`text-embedding-ada-002`). Deploy these models in your Azure AI Foundry project, using this set of steps for each model.
-These steps deploy a model to a real-time endpoint from the AI Foundry portal [model catalog](../how-to/model-catalog-overview.md):
+These steps deploy a model to a real-time endpoint from the Azure AI Foundry portal [model catalog](../how-to/model-catalog-overview.md):
1. On the left navigation pane, select **Model catalog**.
1. Select the **gpt-4o-mini** model from the list of models. You can use the search bar to find it.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、copilot-sdk-create-resources.md
ファイルに対するマイナーな修正であり、用語の一貫性を向上させる目的で行われました。具体的には、「AI Foundry portal」という表現が「Azure AI Foundry portal」へと修正されています。
変更の主な内容は以下の通りです:
- モデルをデプロイする手順の説明文中で、「AI Foundry portal」と表現されていた部分が、「Azure AI Foundry portal」に変更されました。
この修正により、サービス名の正確な表現が促進され、読者に提供される情報がより一貫して明確になります。文書内での用語の統一は、ユーザーが内容を理解しやすくするだけでなく、全体的なドキュメントの信頼性を向上させるために重要です。
articles/ai-studio/tutorials/copilot-sdk-evaluate.md
Diff
@@ -72,7 +72,7 @@ The script also logs the evaluation results to the cloud project so that you can
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/evaluate.py" id="evaluate_wrapper":::
-1. Finally, add code to run the evaluation, view the results locally, and gives you a link to the evaluation results in AI Foundry portal:
+1. Finally, add code to run the evaluation, view the results locally, and gives you a link to the evaluation results in Azure AI Foundry portal:
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/evaluate.py" id="run_evaluation":::
@@ -99,7 +99,7 @@ In Part 1 of this tutorial series, you created an **.env** file that specifies t
1. Install the required package:
```bash
- pip install azure_ai-evaluation
+ pip install azure-ai-evaluation
```
1. Now run the evaluation script:
@@ -139,12 +139,12 @@ If you weren't able to increase the tokens per minute limit for your model, you
12 Sorry, I only can answer queries related to ou... ... 12
[13 rows x 8 columns]
-('View evaluation results in AI Foundry portal: '
+('View evaluation results in Azure AI Foundry portal: '
'https://xxxxxxxxxxxxxxxxxxxxxxx')
```
-### View evaluation results in AI Foundry portal
+### View evaluation results in Azure AI Foundry portal
Once the evaluation run completes, follow the link to view the evaluation results on the **Evaluation** page in the Azure AI Foundry portal.
@@ -154,7 +154,7 @@ You can also look at the individual rows and see metric scores per row, and view
:::image type="content" source="../media/tutorials/develop-rag-copilot-sdk/eval-studio-rows.png" alt-text="Screenshot shows rows of evaluation results in Azure AI Foundry portal.":::
-For more information about evaluation results in AI Foundry portal, see [How to view evaluation results in AI Foundry portal](../how-to/evaluate-results.md).
+For more information about evaluation results in Azure AI Foundry portal, see [How to view evaluation results in Azure AI Foundry portal](../how-to/evaluate-results.md).
## Iterate and improve
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、copilot-sdk-evaluate.md
ファイルにおける用語の一貫性を向上させるために行われました。具体的には、「AI Foundry portal」という表現が「Azure AI Foundry portal」に修正され、文書全体での表現が統一されています。
主な変更点は次の通りです:
- モデルの評価結果へのリンクや関連する説明において、「AI Foundry portal」という表現が「Azure AI Foundry portal」に変更されました。
- pip install
コマンドに関する説明でも、パッケージ名が「azure_ai-evaluation」から「azure-ai-evaluation」へ修正されています。
これらの変更により、利用者がAzure AI Foundryの機能を理解しやすくなり、公式ドキュメントとしての信頼性が高まります。用語の一貫性を保つことは、技術文書の品質向上に寄与し、読者が提供される情報を容易に消化できるようにするために重要です。
articles/ai-studio/tutorials/deploy-chat-web-app.md
Diff
@@ -20,7 +20,7 @@ author: sdgilley
[!INCLUDE [feature-preview](../includes/feature-preview.md)]
-In this article, you deploy an enterprise chat web app that uses your own data with a large language model in AI Foundry portal.
+In this article, you deploy an enterprise chat web app that uses your own data with a large language model in Azure AI Foundry portal.
Your data source is used to help ground the model with specific data. Grounding means that the model uses your data to help it understand the context of your question. You're not changing the deployed model itself. Your data is stored separately and securely in your original data source
@@ -34,7 +34,7 @@ The steps in this tutorial are:
## Prerequisites
- An Azure subscription - <a href="https://azure.microsoft.com/free/cognitive-services" target="_blank">Create one for free</a>.
-- A [deployed Azure OpenAI](../how-to/deploy-models-openai.md) chat model. Complete the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md) to create this resource if you haven't already.
+- A [deployed Azure OpenAI](../how-to/deploy-models-openai.md) chat model. Complete the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md) to create this resource if you haven't already.
- An [Azure AI Search service connection](../how-to/connections-add.md#create-a-new-connection) to index the sample product data.
@@ -44,7 +44,7 @@ The steps in this tutorial are:
## Add your data and try the chat model again
-In the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md) (that's a prerequisite for this tutorial), observe how your model responds without your data. Now you add your data to the model to help it answer questions about your products.
+In the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md) (that's a prerequisite for this tutorial), observe how your model responds without your data. Now you add your data to the model to help it answer questions about your products.
[!INCLUDE [Chat with your data](../includes/chat-with-data.md)]
@@ -54,7 +54,7 @@ Once you're satisfied with the experience in Azure AI Foundry portal, you can de
### Find your resource group in the Azure portal
-In this tutorial, your web app is deployed to the same resource group as your [AI Foundry hub](../how-to/create-secure-ai-hub.md). Later you configure authentication for the web app in the Azure portal.
+In this tutorial, your web app is deployed to the same resource group as your [Azure AI Foundry hub](../how-to/create-secure-ai-hub.md). Later you configure authentication for the web app in the Azure portal.
Follow these steps to navigate from Azure AI Foundry to your resource group in the Azure portal:
@@ -78,7 +78,7 @@ To deploy the web app:
1. Complete the steps in the previous section to [add your data](#add-your-data-and-try-the-chat-model-again) to the playground.
> [!NOTE]
- > You can deploy a web app with or without your own data, but at least you need a deployed model as described in the [AI Foundry playground quickstart](../quickstarts/get-started-playground.md).
+ > You can deploy a web app with or without your own data, but at least you need a deployed model as described in the [Azure AI Foundry playground quickstart](../quickstarts/get-started-playground.md).
1. Select **Deploy > ...as a web app**.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、deploy-chat-web-app.md
ファイルにおいて用語の一貫性を向上させるために行われました。具体的には、「AI Foundry portal」という表現が「Azure AI Foundry portal」に変更され、技術用語の統一が図られています。
主な変更点は以下の通りです:
- 文中の「AI Foundry portal」が「Azure AI Foundry portal」に修正され、より明確な表現が使用されています。
- 依存関係や事前準備のセクションに関しても、同様に「AI Foundry playground quickstart」が「Azure AI Foundry playground quickstart」に変更されています。
これにより、読者は関連するリソースにアクセスしやすくなり、全体の文書がより分かりやすくなります。用語の一貫性は、読者にとっての理解を容易にし、文書の信頼性を高めるうえで重要な要素です。
articles/ai-studio/tutorials/screen-reader.md
Diff
@@ -14,7 +14,7 @@ ms.author: sgilley
author: sdgilley
---
-# QuickStart: Get started using AI Foundry with a screen reader
+# QuickStart: Get started using Azure AI Foundry with a screen reader
This article is for people who use screen readers such as [Microsoft's Narrator](https://support.microsoft.com/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1#WindowsVersion=Windows_11), JAWS, NVDA or Apple's Voiceover. In this quickstart, you'll be introduced to the basic structure of Azure AI Foundry and discover how to navigate around efficiently.
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、screen-reader.md
ファイルにおいて用語の一貫性を向上させるために行われました。具体的には、タイトルの表現が「AI Foundry」から「Azure AI Foundry」に修正されています。
主な変更点は以下の通りです:
- タイトルが「QuickStart: Get started using AI Foundry with a screen reader」から「QuickStart: Get started using Azure AI Foundry with a screen reader」に変更され、製品名が明確化されました。
この修正により、情報がより正確になり、ユーザーにとって理解しやすくなります。用語の一貫性と明確さは、技術文書において重要な要素であり、読者が提供される情報を正しく把握するための助けとなります。
articles/ai-studio/what-is-ai-studio.md
Diff
@@ -26,14 +26,14 @@ ms.custom: ignite-2023, build-2024, ignite-2024
- Explore, build, test, and deploy using cutting-edge AI tools and ML models, grounded in responsible AI practices.
- Collaborate with a team for the full life-cycle of application development.
-With AI Foundry, you can explore a wide variety of models, services and capabilities, and get to building AI applications that best serve your goals. The Azure AI Foundry platform facilitates scalability for transforming proof of concepts into full-fledged production applications with ease. Continuous monitoring and refinement support long-term success.
+With Azure AI Foundry, you can explore a wide variety of models, services and capabilities, and get to building AI applications that best serve your goals. The Azure AI Foundry platform facilitates scalability for transforming proof of concepts into full-fledged production applications with ease. Continuous monitoring and refinement support long-term success.
:::image type="content" source="./media/explore/ai-studio-home.png" alt-text="Screenshot of the Azure AI Foundry home page with links to get started." lightbox="./media/explore/ai-studio-home.png":::
-When you come to the Azure AI Foundry portal, you find that all paths lead to a project. Projects are easy-to-manage containers for your work—and the key to collaboration, organization, and connecting data and other services. Before you create your first project, you can explore models from many providers, and try out AI services and capabilities. When you're ready to move forward with a model or service, AI Foundry guides you to create a project. Once you are in a project, all of the Azure AI capabilities come to life.
+When you come to the Azure AI Foundry portal, you find that all paths lead to a project. Projects are easy-to-manage containers for your work—and the key to collaboration, organization, and connecting data and other services. Before you create your first project, you can explore models from many providers, and try out AI services and capabilities. When you're ready to move forward with a model or service, Azure AI Foundry guides you to create a project. Once you are in a project, all of the Azure AI capabilities come to life.
> [!NOTE]
-> If you want to focus only on Azure OpenAI models and capabilities, we have a place where you can work with your Azure OpenAI resource instead of a project. For more information, see [What is Azure OpenAI in Azure AI Foundry?](azure-openai-in-ai-studio.md). However, for most situations, we recommend an AI Foundry project to build with a wide range of AI models, functionalities and tools as you build, test, and deploy AI solutions.
+> If you want to focus only on Azure OpenAI models and capabilities, we have a place where you can work with your Azure OpenAI resource instead of a project. For more information, see [What is Azure OpenAI in Azure AI Foundry?](azure-openai-in-ai-studio.md). However, for most situations, we recommend an Azure AI Foundry project to build with a wide range of AI models, functionalities and tools as you build, test, and deploy AI solutions.
## Work in an Azure AI Foundry project
@@ -45,7 +45,7 @@ Once you're in a project, you'll see an overview of what you can do with it on t
:::image type="content" source="media/explore/project-view-current.png" alt-text="Screenshot shows the project overview in Azure AI Foundry." lightbox="media/explore/project-view-current.png":::
-The AI Foundry portal is organized around your goals. Generally, as you develop with Azure AI, you'll likely go through a few distinct stages of project development:
+The Azure AI Foundry portal is organized around your goals. Generally, as you develop with Azure AI, you'll likely go through a few distinct stages of project development:
* **Define and explore**. In this stage you define your project goals, and then explore and test models and services against your use case to find the ones that enable you to achieve your goals.
* **Build and customize**. In this stage, you're actively building solutions and applications with the models, tools, and capabilities you selected. You can also customize models to perform better for your use case by fine-tuning, grounding in your data, and more. Building and customizing might be something you choose to do in the Azure AI Foundry portal, or through code and the Azure AI Foundry SDKs. Either way, a project provides you with everything you need.
@@ -72,15 +72,15 @@ Azure AI Foundry is monetized through individual products customer access and co
The platform is free to use and explore. Pricing occurs at deployment level.
-Using AI Foundry also incurs cost associated with the underlying services. To learn more, read [Plan and manage costs for Azure AI services](./how-to/costs-plan-manage.md).
+Using Azure AI Foundry also incurs cost associated with the underlying services. To learn more, read [Plan and manage costs for Azure AI services](./how-to/costs-plan-manage.md).
## Region availability
-AI Foundry is available in most regions where Azure AI services are available. For more information, see [region support for AI Foundry](reference/region-support.md).
+Azure AI Foundry is available in most regions where Azure AI services are available. For more information, see [region support for Azure AI Foundry](reference/region-support.md).
## How to get access
-You can [explore AI Foundry portal (including the model catalog)](./how-to/model-catalog.md) without signing in.
+You can [explore Azure AI Foundry portal (including the model catalog)](./how-to/model-catalog.md) without signing in.
But for full functionality there are some requirements:
Summary
{
"modification_type": "minor update",
"modification_title": "用語の一貫性向上"
}
Explanation
この変更は、what-is-ai-studio.md
ファイルにおいて用語の一貫性を向上させるために行われました。具体的には、「AI Foundry」という表現が「Azure AI Foundry」に統一され、製品名が正確に示されるように修正されています。
主な変更点は以下の通りです:
- 文中の「AI Foundry」がすべて「Azure AI Foundry」に変更され、製品名の明確化が図られています。
- 文章の一部が見直され、特に「Azure AI Foundry」関連の説明を通じて、情報の正確性と一貫性が強化されています。
この修正によって、読者は提供される情報をより容易に理解できるようになり、全体の文書がより信頼性の高いものとなります。用語の一貫性は、技術文書において非常に重要であり、読者の理解を深める助けとなります。