View Diff on GitHub
ハイライト
ドキュメントの更新により、多くのマイナーアップデートが行われ、さらに新機能も追加されています。特に注目すべき点として、新しいサーバーレスAPIを使用したモデルのファインチューニング手順の追加が挙げられます。
新機能
- 「Azure AI FoundryポータルにおけるサーバーレスAPIを使用したモデルのファインチューニング」に関する新しい記事が追加されました。このガイドは、ユーザーが効果的にファインチューニングを行うために役立つ情報を提供しています。
- サーバーレスAPIを使用したモデルのファインチューニング関連の画像「fine-tune-filters.png」が追加されました。
破壊的変更
なし
その他の更新
- カスタムラベルに関するビデオリンクが更新され、最新の内容を反映。
- 言語サービスの「モデルライフサイクル」におけるモデルのバージョン情報が修正。
- 「Nvidia」の表記が「NVIDIA」に統一されたことでブランド名の正確性が向上。
- 「管理されたネットワークの構成」に関する説明が明確化され、ユーザーが理解しやすい内容に。
- Mistralモデルの利用可能な地域が更新され、具体的なファインチューニング地域が記載。
- ドキュメントの目次(toc.yml)にサーバーレスAPI関連の項目が追加されました。
インサイト
このシリーズの変更は、主にユーザーエクスペリエンスの向上と情報の正確性を高めることを目的としています。記事の中で最新のリンク情報や、正確なブランド表記の使用、そしてモデルの利用可能地域の明示など、ドキュメントの信頼性向上を目的とした小規模な修正が行われています。特に、新しいファインチューニング手法に関する情報の追加は、Azure AI Foundryを利用するユーザーにとって非常に有意義な追加であり、具体的な手順から利点までが詳述されています。
この一連の更新は、ドキュメントの整合性と最新性を重視したマイナーアップデートとして位置付けられ、ユーザーがAIサービスをより効率的かつ効果的に利用するためのサポートとなることが期待されています。特にサーバーレスAPIを用いたモデル調整プロセスの新しい手引きは、実用的な価値を提供し、Azureプラットフォーム上でのAIモデルの操作性を向上させるものです。
Summary Table
Modified Contents
articles/ai-services/document-intelligence/train/custom-labels.md
Diff
@@ -41,7 +41,7 @@ A labeled dataset consists of several files:
* We explore how to create a balanced data set and select the right documents to label. This process sets you on the path to higher quality models.
-> [!VIDEO https://www.microsoft.com/en-us/videoplayer/embed/RWWHru]
+> [!VIDEO 1190c010-ef3e-4cc6-8ffc-6d896fbb9711]
## Create a balanced dataset
Summary
{
"modification_type": "minor update",
"modification_title": "カスタムラベルのビデオリンクの更新"
}
Explanation
この変更は、ドキュメント「カスタムラベル」におけるビデオリンクを更新しました。具体的には、以前のビデオリンク(https://www.microsoft.com/en-us/videoplayer/embed/RWWHru)が新しい識別子を持つリンク(1190c010-ef3e-4cc6-8ffc-6d896fbb9711)に変更されました。この変更に伴い、関連する内容の品質向上が期待されます。加えて、行から1行が削除され、1行が追加されているため、影響を受けるのはビデオリンクのみで、全体の構成には大きな変更はありません。変更に関する詳細は、こちらのリンクで確認できます。
articles/ai-services/language-service/concepts/model-lifecycle.md
Diff
@@ -41,8 +41,8 @@ Use the table below to find which model versions are supported by each feature:
| Sentiment Analysis and opinion mining | `latest*` | |
| Language Detection | `latest*` | |
| Entity Linking | `latest*` | |
-| Named Entity Recognition (NER) | `latest*` | `2023-04-15-preview**` |
-| Personally Identifiable Information (PII) detection | `latest*` | `2023-04-15-preview**` |
+| Named Entity Recognition (NER) | `latest*` | `2024-04-15-preview**` |
+| Personally Identifiable Information (PII) detection | `latest*` | `2024-04-15-preview**` |
| PII detection for conversations | `latest*` | `2024-11-01-preview**` |
| Question answering | `latest*` | |
| Text Analytics for health | `latest*` | `2022-08-15-preview`, `2023-01-01-preview**`|
Summary
{
"modification_type": "minor update",
"modification_title": "モデルのバージョン更新"
}
Explanation
この変更では、言語サービスの「モデルライフサイクル」に関するドキュメントの一部が更新されました。具体的には、表内のいくつかのモデルバージョンについて、前回のプレビューリリース日が「2023-04-15-preview」から「2024-04-15-preview」に変更されました。これにより、Named Entity Recognition(NER)およびPersonally Identifiable Information(PII)検出に関連する情報が最新のリリーススケジュールを反映するよう修正されました。更新された情報は、言語サービスを利用する際に重要な要素となり、ユーザーにとって役立つ内容となっています。変更された内容の詳細は、こちらのリンクで確認できます。
articles/ai-services/language-service/summarization/how-to/use-containers.md
Diff
@@ -35,7 +35,7 @@ The following table describes the minimum and recommended specifications for the
| Container Type | Recommended number of CPU cores | Recommended memory | Notes |
|----------------------------|----------------------------------|--------------------|-------|
| Summarization CPU container| 16 | 48 GB | |
-| Summarization GPU container| 2 | 24 GB | Requires an Nvidia GPU that supports Cuda 11.8 with 16GB VRAM.|
+| Summarization GPU container| 2 | 24 GB | Requires an NVIDIA GPU that supports Cuda 11.8 with 16GB VRAM.|
CPU core and memory correspond to the `--cpus` and `--memory` settings, which are used as part of the `docker run` command.
Summary
{
"modification_type": "minor update",
"modification_title": "NVIDIAの表記を修正"
}
Explanation
この変更では、言語サービスの「コンテナの使用」に関するドキュメントが一部修正されました。具体的には、GPUコンテナに関する説明の中で、「Nvidia GPU」の表記が「NVIDIA GPU」に変更されています。この修正は、ブランド名の正確な表記を反映したものであり、他の情報には影響を及ぼしていません。ユーザーが正しいブランド名を認識し、適切なハードウェアを選択できるよう、正確性が向上しました。変更された内容の詳細は、こちらのリンクで確認できます。
articles/ai-studio/how-to/configure-managed-network.md
Diff
@@ -135,7 +135,7 @@ Before following the steps in this article, make sure you have the following pre
## Limitations
-* Azure AI Foundry currently doesn't support bringing your own virtual network, it only supports managed virtual network isolation.
+* Azure AI Foundry supports managed virtual network isolation for securing your compute resources. Azure AI Foundry does not support bring your own virtual network for securing compute resources. Please note bring your own virtual network for securing computes is different than your Azure virtual network that is required to access Azure AI Foundry from your on-premises network.
* Once you enable managed virtual network isolation of your Azure AI, you can't disable it.
* Managed virtual network uses private endpoint connection to access your private resources. You can't have a private endpoint and a service endpoint at the same time for your Azure resources, such as a storage account. We recommend using private endpoints in all scenarios.
* The managed virtual network is deleted when the Azure AI is deleted.
Summary
{
"modification_type": "minor update",
"modification_title": "仮想ネットワークの制限に関する説明を明確化"
}
Explanation
この変更では、「管理されたネットワークの構成」に関するドキュメントの制限に関する説明が改訂されました。具体的には、Azure AI Foundryが管理された仮想ネットワークの隔離をサポートすることを明示し、ユーザーが独自の仮想ネットワークを持ち込むことができないことを再強調しています。また、独自の仮想ネットワークとAzure AI FoundryにアクセスするためのAzure仮想ネットワークの違いについても触れられ、誤解を避けるためのより明確な情報が提供されています。この修正により、ユーザーはサービスの利用条件をより理解しやすくなるでしょう。変更された内容の詳細は、こちらのリンクで確認できます。
articles/ai-studio/how-to/deploy-models-mistral-nemo.md
Diff
@@ -37,7 +37,7 @@ Mistral Nemo is a 12B model, making it a powerful drop-in replacement for any sy
Additionally, Mistral Nemo is:
-* **Jointly developed with Nvidia**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
+* **Jointly developed with NVIDIA**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
* **Multilingual proficient**. Mistral Nemo is equipped with a tokenizer called Tekken, which is designed for multilingual applications. It supports over 100 languages, such as English, French, German, and Spanish. Tekken is more efficient than the Llama 3 tokenizer in compressing text for approximately 85% of all languages, with significant improvements in Malayalam, Hindi, Arabic, and prevalent European languages.
* **Agent-centric**. Mistral Nemo possesses top-tier agentic capabilities, including native function calling and JSON outputting.
* **Advanced in reasoning**. Mistral Nemo demonstrates state-of-the-art mathematical and reasoning capabilities within its size category.
@@ -477,7 +477,7 @@ Mistral Nemo is a 12B model, making it a powerful drop-in replacement for any sy
Additionally, Mistral Nemo is:
-* **Jointly developed with Nvidia**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
+* **Jointly developed with NVIDIA**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
* **Multilingual proficient**. Mistral Nemo is equipped with a tokenizer called Tekken, which is designed for multilingual applications. It supports over 100 languages, such as English, French, German, and Spanish. Tekken is more efficient than the Llama 3 tokenizer in compressing text for approximately 85% of all languages, with significant improvements in Malayalam, Hindi, Arabic, and prevalent European languages.
* **Agent-centric**. Mistral Nemo possesses top-tier agentic capabilities, including native function calling and JSON outputting.
* **Advanced in reasoning**. Mistral Nemo demonstrates state-of-the-art mathematical and reasoning capabilities within its size category.
@@ -936,7 +936,7 @@ Mistral Nemo is a 12B model, making it a powerful drop-in replacement for any sy
Additionally, Mistral Nemo is:
-* **Jointly developed with Nvidia**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
+* **Jointly developed with NVIDIA**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
* **Multilingual proficient**. Mistral Nemo is equipped with a tokenizer called Tekken, which is designed for multilingual applications. It supports over 100 languages, such as English, French, German, and Spanish. Tekken is more efficient than the Llama 3 tokenizer in compressing text for approximately 85% of all languages, with significant improvements in Malayalam, Hindi, Arabic, and prevalent European languages.
* **Agent-centric**. Mistral Nemo possesses top-tier agentic capabilities, including native function calling and JSON outputting.
* **Advanced in reasoning**. Mistral Nemo demonstrates state-of-the-art mathematical and reasoning capabilities within its size category.
@@ -1417,7 +1417,7 @@ Mistral Nemo is a 12B model, making it a powerful drop-in replacement for any sy
Additionally, Mistral Nemo is:
-* **Jointly developed with Nvidia**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
+* **Jointly developed with NVIDIA**. This collaboration has resulted in a powerful 12B model that pushes the boundaries of language understanding and generation.
* **Multilingual proficient**. Mistral Nemo is equipped with a tokenizer called Tekken, which is designed for multilingual applications. It supports over 100 languages, such as English, French, German, and Spanish. Tekken is more efficient than the Llama 3 tokenizer in compressing text for approximately 85% of all languages, with significant improvements in Malayalam, Hindi, Arabic, and prevalent European languages.
* **Agent-centric**. Mistral Nemo possesses top-tier agentic capabilities, including native function calling and JSON outputting.
* **Advanced in reasoning**. Mistral Nemo demonstrates state-of-the-art mathematical and reasoning capabilities within its size category.
Summary
{
"modification_type": "minor update",
"modification_title": "NVIDIAの表記を修正"
}
Explanation
この変更では、Mistral Nemoモデルの説明において、「Nvidia」という表記が「NVIDIA」に修正されました。この修正は、ブランド名の正式な表記に従ったものであり、技術的な内容には影響を及ぼしていません。Mistral Nemoが12Bモデルであり、言語理解と生成の限界を押し広げるためにNVIDIAと共同開発されたことを説明する部分が対象となっています。これにより、ブランド名の一貫性と正確性が保証され、読者が正確な情報を得られるようになっています。変更内容の詳細は、こちらのリンクで確認できます。
articles/ai-studio/how-to/fine-tune-serverless.md
Diff
@@ -0,0 +1,235 @@
+---
+title: Fine-tune models using serverless APIs in Azure AI Foundry portal
+titleSuffix: Azure AI Foundry
+description: Learn how to fine-tune models deployed via serverless APIs in Azure AI Foundry.
+manager: scottpolly
+ms.service: azure-ai-studio
+ms.topic: how-to
+ms.date: 01/31/2025
+ms.reviewer: rasavage
+reviewer: RSavage2
+ms.author: ssalgado
+author: ssalgadodev
+ms.custom: references_regions
+---
+
+# Fine-tune models using serverless APIs in Azure AI Foundry
+
+[!INCLUDE [Feature preview](~/reusable-content/ce-skilling/azure/includes/ai-studio/includes/feature-preview.md)]
+
+Azure AI Foundry lets you tailor large language models to your personal datasets by using a process known as *fine-tuning*.
+
+Fine-tuning provides significant value by enabling customization and optimization for specific tasks and applications. It leads to improved performance, cost efficiency, reduced latency, and tailored outputs.
+
+In this article, you learn how to fine-tune models that are deployed via serverless APIs in [Azure AI Foundry](https://ai.azure.com).
+
+
+## Prerequisites
+
+- An Azure subscription with a valid payment method. Free or trial Azure subscriptions won't work. If you don't have an Azure subscription, create a [paid Azure account](https://azure.microsoft.com/pricing/purchase-options/pay-as-you-go) to begin.
+
+- Access to the [Azure portal](https://portal.azure.com).
+
+- An [Azure AI Foundry project](create-projects.md).
+
+- Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure AI Foundry portal. To perform the steps in this article, your user account must be assigned the __owner__ or __contributor__ role for the Azure subscription. For more information on permissions, see [Role-based access control in Azure AI Foundry portal](../concepts/rbac-ai-studio.md).
+
+
+## Find models with fine-tuning support
+
+The AI Foundry model catalog offers fine-tuning support for multiple types of models, including chat completions and text generation. For a list of models that support fine-tuning and the Azure regions of support for fine-tuning, see [region availability for models in serverless API endpoints.](deploy-models-serverless-availability.md).
+
+
+You can also go to the Azure AI Foundry portal to view all models that contain fine-tuning support:
+
+1. Sign in to [Azure AI Foundry](https://ai.azure.com).
+1. If you're not already in your project, select it.
+1. Navigate to the model catalog.
+1. Select the **Fine-tuning tasks** filter.
+
+ :::image type="content" source="../media/how-to/fine-tune/fine-tune-filters.png" alt-text="Screenshot of model catalog finetuning filter options." lightbox="../media/how-to/fine-tune/fine-tune-filters.png":::
+
+1. Select **All** or select a specific task.
+
+
+
+## Verify registration of subscription provider
+
+Verify the subscription is registered to the `Microsoft.Network` resource provider.
+1. Sign in to the [Azure portal](https://portal.azure.com).
+1. Select **Subscriptions** from the left menu.
+1. Select the subscription you want to use.
+1. Select **Settings** > **Resource providers** from the left menu.
+1. Confirm that **Microsoft.Network** is in the list of resource providers. Otherwise add it.
+
+
+
+### Prepare data for fine-tuning
+
+Prepare your training and validation data to fine-tune your model. Your training data and validation data sets consist of input and output examples for how you would like the model to perform.
+
+Make sure all your training examples follow the expected format for inference. To fine-tune models effectively, ensure a balanced and diverse dataset by maintaining data balance, including various scenarios, and periodically refining training data to align with real-world expectations. These actions ultimately lead to more accurate and balanced model responses.
+
+> [!TIP]
+> Different model types require a different format of training data.
+
+# [Chat completion](#tab/chat-completion)
+
+### Example file format
+
+The supported file type is JSON Lines. Files are uploaded to the default datastore and made available in your project.
+
+```json
+ {"messages": [{"role": "system", "content": "You are an Xbox customer support agent whose primary goal is to help users with issues they are experiencing with their Xbox devices. You are friendly and concise. You only provide factual answers to queries, and do not provide answers that are not related to Xbox."}, {"role": "user", "content": "Is Xbox better than PlayStation?"}, {"role": "assistant", "content": "I apologize, but I cannot provide personal opinions. My primary job is to assist you with any issues related to your Xbox device. Do you have any Xbox-related issues that need addressing?"}]}
+ {"messages": [{"role": "system", "content": "You are an Xbox customer support agent whose primary goal is to help users with issues they are experiencing with their Xbox devices. You are friendly and concise. You only provide factual answers to queries, and do not provide answers that are not related to Xbox."}, {"role": "user", "content": "Can I play PC games on my Xbox?"}, {"role": "assistant", "content": "While Xbox consoles don't natively support PC games, they can play an array of Xbox games, many of which are also available on PC. Can I assist you with finding games compatible with your Xbox device?"}]}
+ {"messages": [{"role": "system", "content": "You are an Xbox customer support agent whose primary goal is to help users with issues they are experiencing with their Xbox devices. You are friendly and concise. You only provide factual answers to queries, and do not provide answers that are not related to Xbox."}, {"role": "user", "content": "I'm having trouble connecting my Xbox to the Wi-Fi."}, {"role": "assistant", "content": "No worries, let's go through the network settings on your Xbox. Can you please tell me what happens when you try to connect it to the Wi-Fi?"}]}
+```
+
+# [Text generation](#tab/text-generation)
+
+The training and validation data you use **must** be formatted as a JSON Lines (JSONL) document in which each line represents a single prompt-completion pair.
+
+### Example file format
+
+```json
+{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
+{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
+{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
+```
+
+Here are some example datasets on Hugging Face that you can use to fine-tune your model:
+- [dair-ai/emotion](https://huggingface.co/datasets/dair-ai/emotion)
+
+ :::image type="content" source="../media/how-to/fine-tune/dataset-dair-ai-emotion.png" alt-text="Screenshot of example emotion data on Hugging Face." lightbox="../media/how-to/fine-tune/dataset-dair-ai-emotion.png":::
+
+- [SetFit/mrpc](https://huggingface.co/datasets/SetFit/mrpc)
+
+ :::image type="content" source="../media/how-to/fine-tune/dataset-setfit-mrpc.png" alt-text="Screenshot of example Microsoft Research Paraphrase Corpus (MRPC) data on Hugging Face." lightbox="../media/how-to/fine-tune/dataset-setfit-mrpc.png":::
+
+Single text classification requires the training data to include at least two fields such as `text1` and `label`. Text pair classification requires the training data to include at least three fields such as `text1`, `text2`, and `label`.
+
+The supported file type is JSON Lines. Files are uploaded to the default datastore and made available in your project.
+
+---
+
+## Fine-tune a model
+
+1. Choose the model you want to fine-tune from the Azure AI Foundry [model catalog](https://ai.azure.com/explore/models).
+
+1. On the model's **Details** page, select **fine-tune**. Some foundation models support both __Serverless API__ and __Managed compute__, while others support one or the other.
+
+1. If you're presented the options for __Serverless API__ and __Managed compute__, select __Serverless API__ for fine-tuning. This action opens up a wizard that shows information about __pay-as-you-go__ fine-tuning for your model.
+
+ > [!NOTE]
+ > To use a serverless API to fine-tune your model, your project must belong to an available region. Each model has specific region availability. These regions are listed in the fine-tune wizard that opens up. You can also check [region availability](deploy-models-serverless-availability.md) for your chosen model.
+
+1. Select the **Pricing and terms** tab to learn about pricing for the selected model.
+1. If you're using a model that's offered through Azure Marketplace, select the link to **Azure Marketplace Terms** from the __Overview__ tab to learn more about the terms of use.
+
+ 1. If it's your first time fine-tuning the model (for example, Mistral-large-2407) in the project, you must subscribe your project for the particular offering from Azure AI Foundry. This step requires that your account has the Azure subscription permissions and resource group permissions listed in the prerequisites. Each project has its own subscription to the particular Azure AI Studio offering, which allows you to control and monitor spending. Select **Subscribe and fine-tune**.
+
+ > [!NOTE]
+ > Subscribing a project to a particular Azure AI Foundry offering requires that your account has **Contributor** or **Owner** access at the subscription level where the project is created. Alternatively, your user account can be assigned a custom role that has the Azure subscription permissions and resource group permissions listed in the [prerequisites](#prerequisites).
+
+ 2. Once you sign up the project for the particular Azure AI Foundry offering, subsequent fine-tuning of the _same_ offering in the _same_ project don't require subscribing again. Therefore, you don't need to have the subscription-level permissions for subsequent fine-tune jobs. If this scenario applies to you, select **Continue to fine-tune**.
+
+1. If you're using a Microsoft model (for example, Phi-3.5-mini-instruct), you don't create an Azure Marketplace subscription. Select __Fine-tune__.
+
+1. Enter a name for your fine-tuned model and the optional tags and description.
+1. Select training data to fine-tune your model. See [prepare data for fine-tuning](#prepare-data-for-fine-tuning) for more information.
+
+ > [!NOTE]
+ > If you have your training/validation files in a credential-less datastore, you need to allow workspace managed identity access to your datastore in order to proceed with Serverless API fine-tuning with a credential-less storage. On the __Datastore__ page, after selecting __Update authentication__, select the option to use workspace managed identity.
+
+ 
+
+1. Select validation data.
+1. Specify (optional) task parameters. Task parameters are an optional step and an advanced option. Tuning hyperparameters is essential for optimizing large language models (LLMs) in real-world applications. It allows for improved performance and efficient resource usage. You can choose to keep he default settings or customize parameters like epochs or learning rate.
+
+ - __Batch size multiplier__: The batch size to use for training. When set to -1, batch_size is calculated as 0.2% of examples in training set and the max is 256.
+ - __Learning rate__: The fine-tuning learning rate is the original learning rate used for pretraining multiplied by this multiplier. We recommend experimenting with values between 0.5 and 2. Empirically, we've found that larger learning rates often perform better with larger batch sizes. Must be between 0.0 and 5.0.
+ - __Epochs__: Number of training epochs. An epoch refers to one full cycle through the data set.
+
+1. Review your selections and select __Submit__ to train your model.
+
+Once your model is fine-tuned, you can deploy it and use it in your own application, in the playground, or in prompt flow. For more information on how to use deployed models, see [How to use Mistral premium chat models](./deploy-models-mistral.md).
+
+
+---
+
+## Clean up your fine-tuned models
+
+You can delete a fine-tuned model from the fine-tuning model list in [Azure AI Foundry](https://ai.azure.com) or from the model details page. To delete the fine-tuned model from the Fine-tuning page,
+
+1. Select __Fine-tuning__ from the left navigation in your Azure AI Foundry project.
+1. Select the __Delete__ button to delete the fine-tuned model.
+
+>[!NOTE]
+> You can't delete a custom model if it has an existing deployment. You must first delete your model deployment before you delete your custom model.
+
+## Cost and quota considerations for models deployed as serverless API endpoints
+
+Quota is managed per deployment. Each deployment has a rate limit of 200,000 tokens per minute and 1,000 API requests per minute. However, we currently limit one deployment per model per project. Contact Microsoft Azure Support if the current rate limits aren't sufficient for your scenarios.
+
+#### Cost for Microsoft models
+
+You can find the pricing information on the __Pricing and terms__ tab of the deployment wizard when deploying Microsoft models (such as Phi-3 models) as serverless API endpoints.
+
+#### Cost for non-Microsoft models
+
+Non-Microsoft models deployed as serverless API endpoints are offered through Azure Marketplace and integrated with Azure AI Foundry for use. You can find Azure Marketplace pricing when deploying or fine-tuning these models.
+
+Each time a project subscribes to a given offer from Azure Marketplace, a new resource is created to track the costs associated with its consumption. The same resource is used to track costs associated with inference and fine-tuning; however, multiple meters are available to track each scenario independently.
+
+For more information on how to track costs, see [Monitor costs for models offered through Azure Marketplace](costs-plan-manage.md#monitor-costs-for-models-offered-through-the-azure-marketplace).
+
+:::image type="content" source="../media/deploy-monitor/serverless/costs-model-as-service-cost-details.png" alt-text="A screenshot showing different resources corresponding to different model offers and their associated meters." lightbox="../media/deploy-monitor/serverless/costs-model-as-service-cost-details.png":::
+
+## Sample Notebook
+
+You can use this [sample notebook](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/finetuning/standalone/chat-completion/chat_completion_with_model_as_service.ipynb) to create a standalone fine-tuning job to enhance a model's ability to summarize dialogues between two people using the Samsum dataset. The training data utilized is the ultrachat_200k dataset, which is divided into four splits suitable for supervised fine-tuning (sft) and generation ranking (gen). The notebook employs the available Azure AI models for the chat-completion task (If you would like to use a different model than what's used in the notebook, you can replace the model name). The notebook includes setting up prerequisites, selecting a model to fine-tune, creating training and validation datasets, configuring and submitting the fine-tuning job, and finally, creating a serverless deployment using the fine-tuned model for sample inference.
+
+## Sample CLI
+
+Additionally, you can use this sample CLI to create a standalone fine-tuning job to enhance a model's ability to summarize dialogues between two people using a dataset.
+
+```yaml
+type: finetuning
+
+name: "Phi-3-mini-4k-instruct-with-amlcompute"
+experiment_name: "Phi-3-mini-4k-instruct-finetuning-experiment"
+display_name: "Phi-3-mini-4k-instruct-display-name"
+task: chat_completion
+model_provider: custom
+model:
+ path: "azureml://registries/azureml/models/Phi-3-mini-4k-instruct/versions/14"
+ type: mlflow_model
+training_data: train.jsonl
+validation_data:
+ path: validation.jsonl
+ type: uri_file
+hyperparameters:
+ num_train_epochs: "1"
+ per_device_train_batch_size: "1"
+ learning_rate: "0.00002"
+properties:
+ my_property: "my_value"
+tags:
+ foo_tag: "bar"
+outputs:
+ registered_model:
+ name: "Phi-3-mini-4k-instruct-finetuned-model"
+ type: mlflow_model
+```
+
+The training data used is the same as demonstrated in the SDK notebook. The CLI employs the available Azure AI models for the chat-completion task. If you prefer to use a different model than the one in the CLI sample, you can update the arguments, such as 'model path,' accordingly
+
+## Content filtering
+
+Models deployed as a service with pay-as-you-go billing are protected by Azure AI Content Safety. When deployed to real-time endpoints, you can opt out of this capability. With Azure AI content safety enabled, both the prompt and completion pass through an ensemble of classification models aimed at detecting and preventing the output of harmful content. The content filtering system detects and takes action on specific categories of potentially harmful content in both input prompts and output completions. Learn more about [Azure AI Content Safety](../concepts/content-filtering.md).
+
+
+## Next steps
+- [What is Azure AI Foundry?](../what-is-ai-studio.md)
+- [Learn more about deploying Mistral models](./deploy-models-mistral.md)
+- [Azure AI FAQ article](../faq.yml)
Summary
{
"modification_type": "new feature",
"modification_title": "サーバーレスAPIを使用したモデルのファインチューニング手順の追加"
}
Explanation
この変更では、「Azure AI FoundryポータルにおけるサーバーレスAPIを使用したモデルのファインチューニング」に関する新しい記事が追加されました。この文書は、ユーザーが大規模言語モデルを個々のデータセットに合わせて調整するプロセスである「ファインチューニング」の方法を学ぶためのもので、特にサーバーレスAPIを通じてデプロイされたモデルに焦点を当てています。
記事には、ファインチューニングの利点として、パフォーマンスの向上やコスト効率の改善、遅延の削減、カスタマイズされた出力を得られることが挙げられています。また、ファインチューニングのための前提条件、モデルの探し方、サブスクリプションの登録の確認方法、データ準備の方法、実際のファインチューニング手順、モデルのクリーンアッププロセス、コストとクォータの考慮事項、サンプルノートブックやCLIの使用例など、多岐にわたる情報が詳述されています。
この新しいガイドは、ユーザーがサーバーレス環境で効果的にファインチューニングを行うのに役立つリソースを提供し、Azure AI Foundryの利用を一層促進するものです。詳細については、こちらのリンクで確認できます。
articles/ai-studio/includes/region-availability-maas.md
Diff
@@ -74,11 +74,11 @@ Phi-3-Medium-4K-Instruct <br> Phi-3-Medium-128K-Instruct | Not applicable | E
| Model | Offer Availability Region | Hub/Project Region for Deployment | Hub/Project Region for Fine tuning |
|---------|---------|---------|---------|
Codestral-2501 | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | Not available |
-Mistral Nemo | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | Not available |
-Ministral-3B | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | Not available |
+Mistral Nemo | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | East US 2 |
Mistral Small | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | Not available |
-Mistral Large <br> Mistral-Large (2407) <br> Mistral-Large (2411) | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | Not available |
-
+Ministral-3B | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | East US 2 |
+Mistral Large <br> Mistral-Large (2407) | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | Not available |
+Mistral-Large (2411) | [Microsoft Managed Countries](/partner-center/marketplace/tax-details-marketplace#microsoft-managed-countriesregions) <br> Brazil <br> Hong Kong <br> Israel | East US <br> East US 2 <br> North Central US <br> South Central US <br> Sweden Central <br> West US <br> West US 3 | East US 2 |
### Nixtla models
Summary
{
"modification_type": "minor update",
"modification_title": "Mistralモデルの展開地域とファインチューニング地域の更新"
}
Explanation
この変更は、「Mistralモデル」に関連する情報を更新し、展開地域およびファインチューニング地域の詳細を明確にしました。具体的には、Mistral NemoモデルとMinistral-3Bモデルにおいて、それぞれのファインチューニングが可能な地域として「East US 2」との記載が追加されています。この更新により、ユーザーはこれらのモデルを利用する際に、どの地域でファインチューニングができるかを正確に把握できるようになります。変更内容の詳細は、こちらのリンクで確認できます。
articles/ai-studio/media/how-to/fine-tune/fine-tune-filters.png
Summary
{
"modification_type": "new feature",
"modification_title": "ファインチューニングフィルタの画像の追加"
}
Explanation
この変更では、サーバーレスAPIを使用したモデルのファインチューニングに関連する新しい画像ファイル「fine-tune-filters.png」が追加されました。この画像は、Azure AI Foundryポータルでのファインチューニングタスクにおけるフィルタリングオプションを視覚的に表現したもので、ユーザーがファインチューニングプロセスを理解しやすくするためのものです。画像は、関連する手順や設定がどのように表示されるかを示す役割を果たします。詳細は、こちらのリンクで確認できます。
articles/ai-studio/toc.yml
Diff
@@ -98,6 +98,8 @@ items:
items:
- name: Fine-tuning overview
href: concepts/fine-tuning-overview.md
+ - name: Fine-tune with serverless API
+ href: how-to/fine-tune-serverless.md
- name: Fine-tune with user-managed compute
href: how-to/fine-tune-managed-compute.md
- name: Fine-tune Azure OpenAI models
Summary
{
"modification_type": "minor update",
"modification_title": "サーバーレスAPIによるファインチューニングの項目追加"
}
Explanation
この変更により、「toc.yml」ファイルに新しい項目が追加されました。具体的には、「サーバーレスAPIによるファインチューニング」に関するページへのリンクが設けられ、関連情報へのアクセスが容易になりました。この項目は、ファインチューニング作業における新しい手法をユーザーに提供するもので、以下のように追加されています:
- サーバーレスAPIによるファインチューニングへのリンクが追加され、ユーザーはこの手法を詳しく学ぶことが可能です。
これにより、ユーザーはAIスタジオにおけるファインチューニングの選択肢をより広く把握できるようになります。変更の詳細は、こちらのリンクで確認できます。