View Diff on GitHub
ハイライト
このコード変更では、Azure AI Document Intelligenceおよび言語サービスに関連するドキュメントに対するマイナーなアップデートが行われています。主な変更点は、リンク先URLの修正、誤字の訂正、新機能のサポート情報、Docker Composeの例追加など、ユーザーがより正確で最新の情報にアクセスできるようにするためのものでした。これにより、ユーザーの体験向上とドキュメントの信頼性向上が目的とされています。
新機能
- Azure AI Document Intelligenceコンテナにおいて、Docker Composeを使用した実行例が追加され、これまでより柔軟にコンテナを運用できるようになっています。
破壊的変更
- 特に破壊的な変更は報告されていませんが、リンク先修正などにより、必要な情報にアクセスするためには新しいリンクURLを使用する必要があります。
その他の更新
- 「Document Intelligence」はバージョン4.0をサポート。
- 複数の誤字の修正。
- 多数のリンクURLが修正され、ほとんどの場合「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」への変更が行われました。
インサイト
今回のアップデートは、Azure AIサービス使用ドキュメントの整合性とユーザビリティを向上させています。特定の機能について最新のサポート状態を反映したり、誤解を招きやすい表記の訂正を行うことで、技術者がサービスをより効果的に利用できるよう支援しています。
特にリンクの修正は、正確なリソースへの導線を提供することで、技術的な意思決定をサポートします。また、Docker Composeを用いた実行方法の追加は、ユーザーのITインフラ上での柔軟な導入を可能にし、AzureのDocument Intelligenceサービスをより広範囲に取り入れることができるようにしています。
誤字の修正は小規模な変更に見えるかもしれませんが、これによって文書の信頼性が増し、ユーザーが情報を正確に理解する手助けとなります。全体として、このアップデートはユーザー体験を改善し、Azure AIサービスの利用をより円滑にするものです。
Summary Table
Modified Contents
articles/ai-services/document-intelligence/containers/install-run.md
Diff
@@ -6,36 +6,39 @@ author: laujan
manager: nitinme
ms.service: azure-ai-document-intelligence
ms.topic: how-to
-ms.date: 01/22/2025
+ms.date: 04/03/2025
ms.author: lajanuar
---
-
# Install and run containers
<!-- markdownlint-disable MD024 -->
<!-- markdownlint-disable MD051 -->
:::moniker range=">=doc-intel-2.1.0"
-**This content applies to:**  **v3.0 (GA)**  **v3.1 (GA)**
+**This content applies to:**  **v3.0 (GA)**  **v3.1 (GA)**  **v4.0 (GA)**
Azure AI Document Intelligence is an Azure AI service that lets you build automated data processing software using machine-learning technology. Document Intelligence enables you to identify and extract text, key/value pairs, selection marks, table data, and more from your documents. The results are delivered as structured data that ../includes the relationships in the original file. Containers process only the data provided to them and solely utilize the resources they're permitted to access. Containers can't process data from other regions.
In this article you can learn how to download, install, and run Document Intelligence containers. Containers enable you to run the Document Intelligence service in your own environment. Containers are great for specific security and data governance requirements.
+* **Layout** model is supported by Document Intelligence v3.1 containers.
+
* **Read**, **Layout**, **ID Document**, **Receipt**, and **Invoice** models are supported by Document Intelligence v3.1 containers.
* **Read**, **Layout**, **General Document**, **Business Card**, and **Custom** models are supported by Document Intelligence v3.0 containers.
## Version support
-Support for containers is currently available with Document Intelligence version `v3.0: 2022-08-31 (GA)` for all models and `v3.1 2023-07-31 (GA)` for Read, Layout, ID Document, Receipt, and Invoice models:
+Support for containers is currently available with Document Intelligence version `v3.0: 2022-08-31 (GA)` for all models, `v3.1 2023-07-31 (GA)` for Read, Layout, ID Document, Receipt, and Invoice models, and `v4.0 2024-11-30 (GA)` for Layout:
* [REST API `v3.0: 2022-08-31 (GA)`](/rest/api/aiservices/document-models/analyze-document?view=rest-aiservices-v3.0%20(2022-08-31)&preserve-view=true&tabs=HTTP)
* [REST API `v3.1: 2023-07-31 (GA)`](/rest/api/aiservices/document-models/analyze-document?view=rest-aiservices-v3.1%20(2023-07-31)&tabs=HTTP&preserve-view=true)
+* [REST API `v4.0: 2024-11-30 (GA)`](/rest/api/aiservices/document-models/analyze-document?view=rest-aiservices-v4.0%20(2024-11-30)&tabs=HTTP&preserve-view=true)
* [Client libraries targeting `REST API v3.0: 2022-08-31 (GA)`](../sdk-overview-v3-0.md)
* [Client libraries targeting `REST API v3.1: 2023-07-31 (GA)`](../sdk-overview-v3-1.md)
+* [Client libraries targeting `REST API v4.0: 2024-11-30 (GA)`](../sdk-overview-v4-0.md)
## Prerequisites
@@ -63,7 +66,7 @@ The host is a x64-based computer that runs the Docker container. It can be a com
> [!NOTE]
>
-> Note that Studio container cannot be deployed and run in Azure Kubernetes Service. Studio container is only supported to be run on local machine.
+> The Studio container can't be deployed and run in Azure Kubernetes Service. The Studio container is only supported to run on local machines.
### Container requirements and recommendations
@@ -113,7 +116,9 @@ Feature container | Supporting containers |
> IMAGE ID REPOSITORY TAG
> <image-id> <repository-path/name> <tag-name>
> ```
+::: moniker-end
+:::moniker range="doc-intel-4.0.0"
## Run the container with the **docker-compose up** command
* Replace the {ENDPOINT_URI} and {API_KEY} values with your resource Endpoint URI and the key from the Azure resource page.
@@ -125,7 +130,37 @@ Feature container | Supporting containers |
* The `EULA`, `Billing`, and `ApiKey` values must be specified; otherwise the container can't start.
> [!IMPORTANT]
-> The keys are used to access your Document Intelligence resource. Do not share your keys. Store them securely, for example, using Azure Key Vault. We also recommend regenerating these keys regularly. Only one key is necessary to make an API call. When regenerating the first key, you can use the second key for continued access to the service.
+> The keys are used to access your Document Intelligence resource. Don't share your keys. Store them securely, for example, using Azure Key Vault. We also recommend regenerating these keys regularly. Only one key is necessary to make an API call. When regenerating the first key, you can use the second key for continued access to the service.
+
+### [Layout](#tab/layout)
+
+The following code sample is a self-contained `docker compose` example to run the Document Intelligence Layout container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your Layout container instance.
+
+```yml
+version: "3.9"
+services:
+ azure-form-recognizer-layout:
+ container_name: azure-form-recognizer-layout
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/layout-4.0
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ ports:
+ - "5000:5000"
+ networks:
+ - ocrvnet
+networks:
+ ocrvnet:
+ driver: bridge
+```
+
+Now, you can start the service with the [**docker compose**](https://docs.docker.com/compose/) command:
+
+```bash
+docker-compose up
+
+```
### [Read](#tab/read)
@@ -190,6 +225,302 @@ docker-compose up
Given the resources on the machine, the General Document container might take some time to start up.
+### [Invoice](#tab/invoice)
+
+The following code sample is a self-contained `docker compose` example to run the Document Intelligence Invoice container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your Invoice and Layout container instances.
+
+You must use 3.1 GA Layout image as an upstream for both 3.0 GA and 3.1 GA Invoice models.
+
+```yml
+version: "3.9"
+services:
+ azure-cognitive-service-invoice:
+ container_name: azure-cognitive-service-invoice
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/invoice-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ - AzureCognitiveServiceLayoutHost=http://azure-cognitive-service-layout:5000
+ ports:
+ - "5000:5050"
+ azure-cognitive-service-layout:
+ container_name: azure-cognitive-service-layout
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/layout-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+```
+
+Now, you can start the service with the [**docker compose**](https://docs.docker.com/compose/) command:
+
+```bash
+docker-compose up
+```
+
+### [Receipt](#tab/receipt)
+
+The following code sample is a self-contained `docker compose` example to run the Document Intelligence General Document container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your Receipt and Read container instances.
+
+You can use 3.1 GA Layout image as an upstream instead of Read image.
+
+```yml
+version: "3.9"
+services:
+ azure-cognitive-service-receipt:
+ container_name: azure-cognitive-service-receipt
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/receipt-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ - AzureCognitiveServiceReadHost=http://azure-cognitive-service-read:5000
+ ports:
+ - "5000:5050"
+ azure-cognitive-service-read:
+ container_name: azure-cognitive-service-read
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/read-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+```
+
+Now, you can start the service with the [**docker compose**](https://docs.docker.com/compose/) command:
+
+```bash
+docker-compose up
+```
+
+### [ID Document](#tab/id-document)
+
+The following code sample is a self-contained `docker compose` example to run the Document Intelligence General Document container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your ID and Read container instances.
+
+You can use 3.1 GA Layout image as an upstream instead of Read image.
+
+```yml
+version: "3.9"
+services:
+ azure-cognitive-service-id-document:
+ container_name: azure-cognitive-service-id-document
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/id-document-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ - AzureCognitiveServiceReadHost=http://azure-cognitive-service-read:5000
+ ports:
+ - "5000:5050"
+ azure-cognitive-service-read:
+ container_name: azure-cognitive-service-read
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/read-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+```
+
+Now, you can start the service with the [**docker compose**](https://docs.docker.com/compose/) command:
+
+```bash
+docker-compose up
+```
+
+### [Business Card](#tab/business-card)
+
+```yml
+version: "3.9"
+services:
+ azure-cognitive-service-invoice:
+ container_name: azure-cognitive-service-businesscard
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/businesscard-3.0
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ - AzureCognitiveServiceLayoutHost=http://azure-cognitive-service-layout:5000
+ ports:
+ - "5000:5050"
+ azure-cognitive-service-layout:
+ container_name: azure-cognitive-service-layout
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/layout-3.0
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+```
+
+
+### [Custom](#tab/custom)
+
+In addition to the [prerequisites](#prerequisites), you need to do the following to process a custom document:
+
+#### Create a folder and store the following files
+
+* [**.env**](#create-an-environment-file)
+* [**nginx.conf**](#create-an-nginx-file)
+* [**docker-compose.yml**](#create-a-docker-compose-file)
+
+#### Create a folder and store your input data
+
+* Name this folder **files**.
+* We reference the file path for this folder as **{FILE_MOUNT_PATH}**.
+* Copy the file path in a convenient location, you need to add it to your **.env** file. As an example if the folder is called files, located in the same folder as the `docker-compose` file, the .env file entry is `FILE_MOUNT_PATH="./files"`
+
+#### Create a folder to store the logs written by the Document Intelligence service on your local machine
+
+* Name this folder **output**.
+* We reference the file path for this folder as **{OUTPUT_MOUNT_PATH}**.
+* Copy the file path in a convenient location, you need to add it to your **.env** file. As an example if the folder is called output, located in the same folder as the `docker-compose` file, the .env file entry is `OUTPUT_MOUNT_PATH="./output"`
+
+#### Create a folder for storing internal processing shared between the containers
+
+* Name this folder **shared**.
+* We reference the file path for this folder as **{SHARED_MOUNT_PATH}**.
+* Copy the file path in a convenient location, you need to add it to your **.env** file. As an example if the folder is called shared, located in the same folder as the `docker-compose` file, the .env file entry is `SHARED_MOUNT_PATH="./share"`
+
+#### Create a folder for the Studio to store project related information
+
+* Name this folder **db**.
+* We reference the file path for this folder as **{DB_MOUNT_PATH}**.
+* Copy the file path in a convenient location, you need to add it to your **.env** file. As an example if the folder is called db, located in the same folder as the `docker-compose` file, the .env file entry is `DB_MOUNT_PATH="./db"`
+
+#### Create an environment file
+
+ 1. Name this file **.env**.
+
+ 1. Declare the following environment variables:
+
+```bash
+
+
+SHARED_MOUNT_PATH="./share"
+OUTPUT_MOUNT_PATH="./output"
+FILE_MOUNT_PATH="./files"
+DB_MOUNT_PATH="./db"
+FORM_RECOGNIZER_ENDPOINT_URI="YourFormRecognizerEndpoint"
+FORM_RECOGNIZER_KEY="YourFormRecognizerKey"
+NGINX_CONF_FILE="./nginx.conf"
+```
+
+#### Create an **nginx** file
+
+ 1. Name this file **nginx.conf**.
+
+ 1. Enter the following configuration:
+
+```bash
+worker_processes 1;
+
+events { worker_connections 1024; }
+
+http {
+
+ sendfile on;
+ client_max_body_size 90M;
+ upstream docker-custom {
+ server azure-cognitive-service-custom-template:5000;
+ }
+
+ upstream docker-layout {
+ server azure-cognitive-service-layout:5000;
+ }
+
+ server {
+ listen 5000;
+
+ location = / {
+ proxy_set_header Host $host:$server_port;
+ proxy_set_header Referer $scheme://$host:$server_port;
+ proxy_pass http://docker-custom/;
+ }
+
+ location /status {
+ proxy_pass http://docker-custom/status;
+ }
+
+ location /test {
+ return 200 $scheme://$host:$server_port;
+ }
+
+ location /ready {
+ proxy_pass http://docker-custom/ready;
+ }
+
+ location /swagger {
+ proxy_pass http://docker-custom/swagger;
+ }
+
+ location /api-docs {
+ proxy_pass http://docker-custom/api-docs;
+ }
+
+ location /formrecognizer/documentModels/prebuilt-layout {
+ proxy_set_header Host $host:$server_port;
+ proxy_set_header Referer $scheme://$host:$server_port;
+
+ add_header 'Access-Control-Allow-Origin' '*' always;
+ add_header 'Access-Control-Allow-Headers' 'cache-control,content-type,ocp-apim-subscription-key,x-ms-useragent' always;
+ add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS' always;
+ add_header 'Access-Control-Expose-Headers' '*' always;
+
+ if ($request_method = 'OPTIONS') {
+ return 200;
+ }
+
+ proxy_pass http://docker-layout/formrecognizer/documentModels/prebuilt-layout;
+ }
+
+ location /formrecognizer/documentModels {
+ proxy_set_header Host $host:$server_port;
+ proxy_set_header Referer $scheme://$host:$server_port;
+
+ add_header 'Access-Control-Allow-Origin' '*' always;
+ add_header 'Access-Control-Allow-Headers' 'cache-control,content-type,ocp-apim-subscription-key,x-ms-useragent' always;
+ add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, DELETE' always;
+ add_header 'Access-Control-Expose-Headers' '*' always;
+
+ if ($request_method = 'OPTIONS') {
+ return 200;
+ }
+
+ proxy_pass http://docker-custom/formrecognizer/documentModels;
+ }
+
+ location /formrecognizer/operations {
+ add_header 'Access-Control-Allow-Origin' '*' always;
+ add_header 'Access-Control-Allow-Headers' 'cache-control,content-type,ocp-apim-subscription-key,x-ms-useragent' always;
+ add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE, PATCH' always;
+ add_header 'Access-Control-Expose-Headers' '*' always;
+
+ if ($request_method = OPTIONS ) {
+ return 200;
+ }
+
+ proxy_pass http://docker-custom/formrecognizer/operations;
+ }
+ }
+}
+
+```
+::: moniker-end
+
+:::moniker range="doc-intel-3.0.0 || doc-intel-3.1.0"
+
+## Run the container with the **docker-compose up** command
+
+* Replace the {ENDPOINT_URI} and {API_KEY} values with your resource Endpoint URI and the key from the Azure resource page.
+
+ :::image type="content" source="../media/containers/keys-and-endpoint.png" alt-text="Screenshot of Azure portal keys and endpoint page.":::
+
+* Ensure that the `EULA` value is set to *accept*.
+
+* The `EULA`, `Billing`, and `ApiKey` values must be specified; otherwise the container can't start.
+
+> [!IMPORTANT]
+> The keys are used to access your Document Intelligence resource. Don't share your keys. Store them securely, for example, using Azure Key Vault. We also recommend regenerating these keys regularly. Only one key is necessary to make an API call. When regenerating the first key, you can use the second key for continued access to the service.
+
### [Layout](#tab/layout)
The following code sample is a self-contained `docker compose` example to run the Document Intelligence Layout container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your Layout container instance.
@@ -219,6 +550,69 @@ Now, you can start the service with the [**docker compose**](https://docs.docker
docker-compose up
```
+### [Read](#tab/read)
+
+The following code sample is a self-contained `docker compose` example to run the Document Intelligence Layout container. With `docker compose`, you use a YAML file to configure your application's services. Then, with the `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your Layout container instance.
+
+```yml
+version: "3.9"
+services:
+ azure-form-recognizer-read:
+ container_name: azure-form-recognizer-read
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/read-3.1
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ ports:
+ - "5000:5000"
+ networks:
+ - ocrvnet
+networks:
+ ocrvnet:
+ driver: bridge
+```
+
+Now, you can start the service with the [**docker compose**](https://docs.docker.com/compose/) command:
+
+```bash
+docker-compose up
+```
+
+### [General Document](#tab/general-document)
+
+The following code sample is a self-contained `docker compose` example to run the Document Intelligence General Document container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your General Document and Layout container instances.
+
+```yml
+version: "3.9"
+services:
+ azure-cognitive-service-document:
+ container_name: azure-cognitive-service-document
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/document-3.0
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+ - AzureCognitiveServiceLayoutHost=http://azure-cognitive-service-layout:5000
+ ports:
+ - "5000:5050"
+ azure-cognitive-service-layout:
+ container_name: azure-cognitive-service-layout
+ image: mcr.microsoft.com/azure-cognitive-services/form-recognizer/layout-3.0
+ environment:
+ - EULA=accept
+ - billing={FORM_RECOGNIZER_ENDPOINT_URI}
+ - apiKey={FORM_RECOGNIZER_KEY}
+```
+
+Now, you can start the service with the [**docker compose**](https://docs.docker.com/compose/) command:
+
+```bash
+docker-compose up
+```
+
+Given the resources on the machine, the General Document container might take some time to start up.
+
### [Invoice](#tab/invoice)
The following code sample is a self-contained `docker compose` example to run the Document Intelligence Invoice container. With `docker compose`, you use a YAML file to configure your application's services. Then, with `docker-compose up` command, you create and start all the services from your configuration. Enter {FORM_RECOGNIZER_ENDPOINT_URI} and {FORM_RECOGNIZER_KEY} values for your Invoice and Layout container instances.
@@ -495,8 +889,8 @@ http {
proxy_pass http://docker-custom/formrecognizer/operations;
}
}
-}
+}
```
::: moniker-end
@@ -699,7 +1093,7 @@ Custom template containers require a few different configurations and support ot
|Storage:ObjectStore:AzureBlob:ConnectionString | No| Azure Blob connection string |
| HealthCheck:MemoryUpperboundInMB | No | Memory threshold for reporting unhealthy to liveness. Default: Same as recommended memory |
| StorageTimeToLiveInMinutes | No| `TTL` duration to remove all intermediate and final files. Default: Two days, `TTL` can set between five minutes to seven days |
-| Task:MaxRunningTimeSpanInMinutes | No| Maximum running time for treating request as timeout. Default: 60 minutes |
+| Task:MaxRunningTimeSpanInMinutes | No| Maximum running time for treating request as time out. Default: 60 minutes |
| HTTP_PROXY_BYPASS_URLS | No | Specify URLs for bypassing proxy Example: HTTP_PROXY_BYPASS_URLS = abc.com, xyz.com |
| AzureCognitiveServiceReadHost (Receipt, IdDocument Containers Only)| Yes | Specify Read container uri Example:AzureCognitiveServiceReadHost=http://onprem-frread:5000 |
| AzureCognitiveServiceLayoutHost (Document, Invoice Containers Only) | Yes | Specify Layout container uri Example:AzureCognitiveServiceLayoutHost=http://onprem-frlayout:5000 |
@@ -812,7 +1206,7 @@ That's it! In this article, you learned concepts and workflows for downloading,
* The billing information must be specified when you instantiate a container.
> [!IMPORTANT]
-> Azure AI containers are not licensed to run without being connected to Azure for metering. Customers need to enable the containers to communicate billing information with the metering service at all times. Azure AI containers do not send customer data (for example, the image or text that is being analyzed) to Microsoft.
+> Azure AI containers aren't licensed to run without being connected to Azure for metering. Customers need to enable the containers to always communicate billing information with the metering service. Azure AI containers don't send customer data (for example, the image or text that is being analyzed) to Microsoft.
## Next steps
Summary
{
"modification_type": "minor update",
"modification_title": "コンテナのインストールと実行に関する情報の更新"
}
Explanation
この変更は、Azure AI Document Intelligence に関するコンテナのインストールと実行に関するドキュメントの更新を反映しています。主な変更点には、日付の更新、対応するバージョンの追加、新しい機能のサポート情報、Docker Composeを使用した実行例が含まれています。
具体的には、以下の内容が追加されました:
- Document Intelligence のバージョン 4.0 (GA) がサポートされること。
- 各バージョンに対する対応する機能モデルのリストが更新され、バージョン 3.1 および 4.0 の詳細が加わりました。
- Docker Compose の使用に関する説明が追加され、具体的なコードサンプルが掲載されました。
- コンテナが Azure Kubernetes Service では正常に実行できないことが強調され、ローカルマシンでの実行が推奨されています。
この更新により、ユーザーは最新の機能セットにアクセスでき、Document Intelligence コンテナを使用した開発がよりスムーズになることが期待されます。全体として、ドキュメントはより明確で、ユーザーにとって使いやすいものになっています。
articles/ai-services/document-intelligence/service-limits.md
Diff
@@ -6,7 +6,7 @@ author: laujan
manager: nitinme
ms.service: azure-ai-document-intelligence
ms.topic: conceptual
-ms.date: 01/15/2025
+ms.date: 04/04/2025
ms.author: lajanuar
monikerRange: '<=doc-intel-4.0.0'
---
@@ -40,7 +40,6 @@ For Document Intelligence v4.0 `2024-11-30` (GA) supports page and line features
* Angle, width/height, and unit aren't supported.
* For each object detected, bounding polygon or bounding regions aren't supported.
-* Page range (`pages`) isn't supported as a parameter.
* The `lines` object isn't supported.
:::moniker-end
@@ -324,4 +323,4 @@ Generally, we recommended testing the workload and the workload patterns before
## Next steps
> [!div class="nextstepaction"]
-> [Learn about error codes and troubleshooting](v3-error-guide.md)
\ No newline at end of file
+> [Learn about error codes and troubleshooting](v3-error-guide.md)
Summary
{
"modification_type": "minor update",
"modification_title": "サービス制限に関する日付の更新"
}
Explanation
この変更は、Azure AI Document Intelligence のサービス制限に関するドキュメントの軽微な更新を示しています。主な変更内容には、文章の日付の更新と一部の文の削除が含まれています。
具体的には、以下のような更新が行われました:
- ドキュメントの日付が2025年1月15日から2025年4月4日に更新され、最新の情報を反映しています。
- “ページ範囲 (pages
) はパラメーターとしてサポートされていない”という文が削除されましたが、これは主に重複している内容を整理したものと思われます。
- 他の内容に変更はありませんが、全体を通じてドキュメントは一貫性を持たせ、最新の運用状況をユーザーに提供するために更新されています。
このような修正は、ユーザーが最新の情報に基づいてサービスを利用する上で重要であり、ドキュメントの品質を向上させることに寄与しています。
articles/ai-services/language-service/conversational-language-understanding/how-to/view-model-evaluation.md
Diff
@@ -16,7 +16,7 @@ ms.custom: language-service-custom-classification
After model training is completed, you can view your model details and see how well it performs against the test set.
> [!NOTE]
-> Using the **Automatically split the testing set from training data** option may result in different model evaluation result every time you [train a new model](train-model.md), as the test set is selected randomly from your utterances. To make sure that the evaulation is calcualted on the same test set every time you train a model, make sure to use the **Use a manual split of training and testing data** option when starting a training job and define your **Testing set** when [add your utterances](tag-utterances.md).
+> Using the **Automatically split the testing set from training data** option may result in different model evaluation result every time you [train a new model](train-model.md), as the test set is selected randomly from your utterances. To make sure that the evaluation is calculated on the same test set every time you train a model, make sure to use the **Use a manual split of training and testing data** option when starting a training job and define your **Testing set** when [add your utterances](tag-utterances.md).
## Prerequisites
Summary
{
"modification_type": "minor update",
"modification_title": "モデル評価の説明における誤字修正"
}
Explanation
この変更は、会話型言語理解に関するモデル評価の手順を説明するドキュメントの軽微な修正を示しています。主な変更点は、文中の誤字の修正にあります。
具体的には、次のような修正が行われました:
- 「evaulation」という誤字が「evaluation」に修正され、正しいスペルに更新されました。
- これに伴い、対象の文がより明確になり、ユーザーがモデル評価に関する情報を正確に理解できるようになっています。
このような修正は、文書の信頼性を向上させ、ユーザーが正確な情報に基づいて操作を行えるようにするために重要です。全体として、ドキュメントの内容はより明瞭で一貫性を持つものになっています。
articles/ai-services/language-service/custom-named-entity-recognition/faq.md
Diff
@@ -42,7 +42,7 @@ When you're ready to start [using your model to make predictions](#how-do-i-use-
## What is the recommended CI/CD process?
-You can train multiple models on the same dataset within the same project. After you have trained your model successfully, you can [view its performance](how-to/view-model-evaluation.md). You can [deploy and test](quickstart.md#deploy-your-model) your model within [Language studio](https://aka.ms/languageStudio). You can add or remove labels from your data and train a **new** model and test it as well. View [service limits](service-limits.md)to learn about maximum number of trained models with the same project. When you [train a model](how-to/train-model.md), you can determine how your dataset is split into training and testing sets. You can also have your data split randomly into training and testing set where there is no guarantee that the reflected model evaluation is about the same test set, and the results are not comparable. It's recommended that you develop your own test set and use it to evaluate both models so you can measure improvement.
+You can train multiple models on the same dataset within the same project. After you have trained your model successfully, you can [view its performance](how-to/view-model-evaluation.md). You can [deploy and test](quickstart.md#deploy-your-model) your model within [Language studio](https://aka.ms/languageStudio). You can add or remove labels from your data and train a **new** model and test it as well. View [service limits](service-limits.md) to learn about maximum number of trained models with the same project. When you [train a model](how-to/train-model.md), you can determine how your dataset is split into training and testing sets. You can also have your data split randomly into training and testing set where there is no guarantee that the reflected model evaluation is about the same test set, and the results are not comparable. It's recommended that you develop your own test set and use it to evaluate both models so you can measure improvement.
## Does a low or high model score guarantee bad or good performance in production?
Summary
{
"modification_type": "minor update",
"modification_title": "CI/CDプロセスの説明の微調整"
}
Explanation
この変更は、カスタム命名エンティティ認識に関するFAQドキュメントの軽微な修正を示しています。主な修正点には、文の書き方の微調整が含まれています。
具体的には、以下のような修正が行われました:
- 説明文の一部において、文の構成が微調整されて、内容の明確さが向上しました。特に、文中のスペースと文のつながりが改善されています。
- 変更前後の意味はほぼ同じですが、文の流れや視認性が向上しており、読みやすさが増しています。
このような微細な修正は、ユーザーが手順や情報をより理解しやすくするために重要です。また、整った文書は信頼性を高め、ユーザー体験を向上させることに寄与します。全体として、文書は一貫性を持ち、より専門的な印象を与えるようになっています。
articles/ai-services/language-service/custom-named-entity-recognition/how-to/view-model-evaluation.md
Diff
@@ -17,7 +17,7 @@ ms.custom: language-service-custom-ner
After your model has finished training, you can view the model performance and see the extracted entities for the documents in the test set.
> [!NOTE]
-> Using the **Automatically split the testing set from training data** option may result in different model evaluation result every time you [train a new model](train-model.md), as the test set is selected randomly from the data. To make sure that the evaulation is calcualted on the same test set every time you train a model, make sure to use the **Use a manual split of training and testing data** option when starting a training job and define your **Test** documents when [labeling data](tag-data.md).
+> Using the **Automatically split the testing set from training data** option may result in different model evaluation result every time you [train a new model](train-model.md), as the test set is selected randomly from the data. To make sure that the evaluation is calculated on the same test set every time you train a model, make sure to use the **Use a manual split of training and testing data** option when starting a training job and define your **Test** documents when [labeling data](tag-data.md).
## Prerequisites
Summary
{
"modification_type": "minor update",
"modification_title": "モデル評価の説明における誤字修正"
}
Explanation
この変更は、カスタム命名エンティティ認識に関するモデル評価の手順を記述したドキュメントでの軽微な修正を示しています。具体的には、誤字の修正と文の明確化が行われました。
主な修正点は以下の通りです:
- 「evaulation」という誤字が「evaluation」に修正され、正確なスペルが使用されています。
- この修正により、モデル評価のプロセスに関する情報がよりクリアになり、ユーザーが正確に理解しやすくなっています。
このようなマイナーな修正は、文書の品質向上に寄与し、ユーザーが正確な情報に基づいて操作を行えるようにするために重要です。結果として、全体として文書の専門性が高まり、信頼性が向上しています。
articles/ai-services/language-service/custom-text-classification/how-to/tag-data.md
Diff
@@ -80,7 +80,7 @@ Use the following steps to label your data:
7. In the bottom section of the right side pane you can add the current file you are viewing to the training set or the testing set. By default all the documents are added to your training set. Learn more about [training and testing sets](train-model.md#data-splitting) and how they are used for model training and evaluation.
> [!TIP]
- > If you are planning on using **Automatic** data spliting use the default option of assigning all the documents into your training set.
+ > If you are planning on using **Automatic** data splitting use the default option of assigning all the documents into your training set.
8. Under the **Distribution** pivot you can view the distribution across training and testing sets. You have two options for viewing:
* *Total instances* where you can view count of all labeled instances of a specific class.
Summary
{
"modification_type": "minor update",
"modification_title": "データ分割に関する表記の修正"
}
Explanation
この変更は、カスタムテキスト分類に関するデータタグ付けの手順を記載したドキュメントでの軽微な修正を反映しています。修正内容は、文中の誤字の訂正です。
具体的には、以下のような修正が行われました:
- 「spliting」という誤字が「splitting」に修正され、正しいスペルが使用されています。
この修正により、ドキュメントがより正確になり、ユーザーが指示を誤解するリスクを軽減しています。情報の正確性を保つことは、特に技術的な文書において重要であり、全体として文書の信頼性向上に寄与しています。ユーザーが手順を理解しやすくなることで、作業の円滑化が期待されます。
articles/ai-services/language-service/includes/use-language-studio.md
Diff
@@ -11,4 +11,4 @@ ms.custom: include, ignite-2024
---
> [!TIP]
-> You can use [**Azure AI Foundry**](../../../ai-foundry/what-is-ai-foundry.md) to try summarization without needing to write code.
+> You can use [**Azure AI Foundry**](../../../ai-foundry/what-is-azure-ai-foundry.md) to try summarization without needing to write code.
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、「言語スタジオの使用」に関する文書の一部を更新し、誤ったリンクが修正されています。具体的には、以下の変更が行われました:
- リンク先の文書が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に修正され、正しい資料への参照が確保されました。
この修正により、ユーザーが「Azure AI Foundry」に関する情報を正確に取得できるようになります。文書内のリンクの正確性は、利用者が意図した情報に到達するために非常に重要であり、ユーザーエクスペリエンスを向上させる役割を果たします。全体的に、この変更は、文書の品質アップと信頼性向上に寄与しています。
articles/ai-services/language-service/key-phrase-extraction/how-to/call-api.md
Diff
@@ -18,7 +18,7 @@ The key phrase extraction feature can evaluate unstructured text, and for each d
This feature is useful if you need to quickly identify the main points in a collection of documents. For example, given input text "*The food was delicious and the staff was wonderful*", the service returns the main topics: "*food*" and "*wonderful staff*".
> [!TIP]
-> If you want to start using this feature, you can follow the [quickstart article](../quickstart.md) to get started. You can also make requests using [Azure AI Foundry](../../../../ai-foundry//what-is-ai-foundry.md) without needing to write code.
+> If you want to start using this feature, you can follow the [quickstart article](../quickstart.md) to get started. You can also make requests using [Azure AI Foundry](../../../../ai-foundry//what-is-azure-ai-foundry.md) without needing to write code.
## Development options
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、キーフレーズ抽出機能に関するドキュメント内での軽微な修正を反映しています。具体的には、以下の内容が更新されました:
- リンクの参照先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に訂正されました。
この修正により、ユーザーが「Azure AI Foundry」に関する正確な情報を得ることができるようになります。文書内のリンクの正確性は、特に技術的なコンテンツにおいて、ユーザーが必要な情報に迅速にアクセスするために非常に重要です。修正によって、ドキュメントの品質が向上し、利用者の体験がよりスムーズになることが期待されます。
articles/ai-services/language-service/key-phrase-extraction/includes/development-options.md
Diff
@@ -12,6 +12,6 @@ To use key phrase extraction, you submit raw unstructured text for analysis and
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate key phrase extraction into your applications using the REST API, or the client library available in a variety of languages. For more information, see the [key phrase extraction quickstart](../quickstart.md). |
| Docker container | Use the available Docker container to [deploy this feature on-premises](../how-to/use-containers.md). These docker containers enable you to bring the service closer to your data for compliance, security, or other operational reasons. |
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、キーフレーズ抽出に関するドキュメント内の開発オプションセクションにおいて、以下の内容が更新されています:
- 「Azure AI Foundry」に関するリンクの修正が行われました。具体的には、リンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されました。
この修正によって、ユーザーは「Azure AI Foundry」に関連する正確な情報にアクセスできるようになります。正確なリンクは、ユーザーが関連資料を効果的に参照できるために非常に重要であり、全体的な文書の信頼性向上に寄与します。また、この変更は、文書の透明性とユーザーエクスペリエンスを改善することにつながるものです。
articles/ai-services/language-service/key-phrase-extraction/overview.md
Diff
@@ -38,5 +38,5 @@ An AI system includes not only the technology, but also the people who use it, t
## Next steps
There are two ways to get started using the entity linking feature:
-* [Azure AI Foundry](../../../ai-foundry/what-is-ai-foundry.md) is a web-based platform that lets you use several Azure AI Language features without needing to write code.
+* [Azure AI Foundry](../../../ai-foundry/what-is-azure-ai-foundry.md) is a web-based platform that lets you use several Azure AI Language features without needing to write code.
* The [quickstart article](quickstart.md) for instructions on making requests to the service using the REST API and client library SDK.
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、キーフレーズ抽出機能の概要に関するドキュメント内での軽微な修正を示しています。具体的には、「Azure AI Foundry」に関連するリンクが以下のように修正されました:
- リンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されました。
この修正により、ユーザーは「Azure AI Foundry」に関する正確な情報を得ることができるようになり、サービスを利用するための理解が深まります。正しいリンクが提供されることは、技術文書において非常に重要であり、ユーザーがリソースにスムーズにアクセスできるようになります。この変更は、ドキュメント全体の信頼性と利便性を高める結果につながります。
articles/ai-services/language-service/language-detection/includes/development-options.md
Diff
@@ -12,6 +12,6 @@ To use language detection, you submit raw unstructured text for analysis and han
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate language detection into your applications using the REST API, or the client library available in a variety of languages. For more information, see the [language detection quickstart](../quickstart.md). |
| Docker container | Use the available Docker container to [deploy this feature on-premises](../how-to/use-containers.md). These docker containers enable you to bring the service closer to your data for compliance, security, or other operational reasons. |
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、言語検出機能に関するドキュメント内の開発オプションセクションにおいて、以下の内容が更新されています:
- 「Azure AI Foundry」に関するリンクが修正されました。具体的には、リンク元が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されています。
このリンクの修正により、ユーザーは「Azure AI Foundry」に関するより正確な情報にアクセスできるようになります。正確な参照は、ユーザーが関連する機能やサービスを理解しやすくするために重要であり、全体的な文書の信頼性を向上させる要素となります。この変更により、ユーザー体験の向上が図られ、サービスの利用においてスムーズなナビゲーションが実現されることが期待されます。
articles/ai-services/language-service/language-detection/overview.md
Diff
@@ -44,5 +44,5 @@ An AI system includes not only the technology, but also the people who will use
## Next steps
There are two ways to get started using the entity linking feature:
-* [Azure AI Foundry](../../../ai-foundry/what-is-ai-foundry.md) is a web-based platform that lets you use several Language service features without needing to write code.
+* [Azure AI Foundry](../../../ai-foundry/what-is-azure-ai-foundry.md) is a web-based platform that lets you use several Language service features without needing to write code.
* The [quickstart article](quickstart.md) for instructions on making requests to the service using the REST API and client library SDK.
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、言語検出機能の概要に関するドキュメントにおいて、軽微な修正が行われたことを示しています。具体的には、「Azure AI Foundry」に関連するリンクが以下のように修正されました:
- リンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されています。
この修正により、ユーザーは「Azure AI Foundry」に関する最新かつ正確な情報にアクセスできるようになります。この変更は、ドキュメントの整合性を保ちながら、読者にとって有益な情報源を提供する役割を果たします。正しいリンクの提示は、利用者が必要なリソースに簡単に到達できるようにするため重要であり、この修正によって全体的な文書の質が向上することが期待されます。
articles/ai-services/language-service/named-entity-recognition/includes/development-options.md
Diff
@@ -12,5 +12,5 @@ To use named entity recognition, you submit raw unstructured text for analysis a
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use named entity recognition with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use named entity recognition with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate named entity recognition into your applications using the REST API, or the client library available in a variety of languages. For more information, see the [named entity recognition quickstart](../quickstart.md). |
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、名前付きエンティティ認識機能に関するドキュメントの開発オプションセクションの内容を更新するものです。主な変更点は以下の通りです:
- 「Azure AI Foundry」に関連するリンクが修正されました。具体的には、リンク元が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されています。
この更新により、ユーザーは「Azure AI Foundry」に関するより正確な情報にアクセスしやすくなります。適切な参照を提供することは、ユーザーがサービスの機能を正しく理解し、利用するために重要です。この修正により、文書全体の信頼性が向上し、ユーザー体験の向上が期待されます。
articles/ai-services/language-service/named-entity-recognition/overview.md
Diff
@@ -45,5 +45,5 @@ An AI system includes not only the technology, but also the people who use it, t
## Next steps
There are two ways to get started using the Named Entity Recognition (NER) feature:
-* [Azure AI Foundry](../../../ai-foundry/what-is-ai-foundry.md) is a web-based platform that lets you use several Language service features without needing to write code.
+* [Azure AI Foundry](../../../ai-foundry/what-is-azure-ai-foundry.md) is a web-based platform that lets you use several Language service features without needing to write code.
* The [quickstart article](quickstart.md) for instructions on making requests to the service using the REST API and client library SDK.
Summary
{
"modification_type": "minor update",
"modification_title": "参照先のURLの修正"
}
Explanation
この変更は、名前付きエンティティ認識機能に関する概要ドキュメントに対して行われた軽微な修正です。具体的には、「Azure AI Foundry」に関連するリンクが以下のように修正されました:
- リンク先が「what-is-ai-foundary.md」から「what-is-azure-ai-foundary.md」に変更されています。
この変更により、ユーザーは「Azure AI Foundry」に関する最新の情報源にアクセスしやすくなり、正確なリソースを参照できるようになります。信頼性のあるリンクを提供することは、ユーザーがサービスを効果的に利用するために重要です。この更新は、文書の整合性を保ちながら、読者にとっての価値を向上させることを目的としています。
articles/ai-services/language-service/orchestration-workflow/how-to/view-model-evaluation.md
Diff
@@ -16,7 +16,7 @@ ms.custom: language-service-custom-classification
After model training is completed, you can view your model details and see how well it performs against the test set. Observing how well your model performed is called evaluation. The test set consists of data that wasn't introduced to the model during the training process.
> [!NOTE]
-> Using the **Automatically split the testing set from training data** option may result in different model evaluation result every time you [train a new model](train-model.md), as the test set is selected randomly from your utterances. To make sure that the evaulation is calcualted on the same test set every time you train a model, make sure to use the **Use a manual split of training and testing data** option when starting a training job and define your **Testing set** when [add your utterances](tag-utterances.md).
+> Using the **Automatically split the testing set from training data** option may result in different model evaluation result every time you [train a new model](train-model.md), as the test set is selected randomly from your utterances. To make sure that the evaluation is calculated on the same test set every time you train a model, make sure to use the **Use a manual split of training and testing data** option when starting a training job and define your **Testing set** when [add your utterances](tag-utterances.md).
## Prerequisites
Summary
{
"modification_type": "minor update",
"modification_title": "誤字の修正"
}
Explanation
この変更は、モデル評価に関する「ビュー・モデル評価」ドキュメント内の文言の誤字を修正するために行われました。具体的な修正内容は以下の通りです:
- 「evaulation」という誤った表記が「evaluation」に変更されました。
- 「calcualted」という誤った表記が「calculated」に変更されました。
これにより、文書がより明確で正確になり、読者が内容を理解する際の混乱を避けることができます。正確な表現を使用することは、情報の信頼性を高め、ユーザー体験の向上に寄与します。修正後の文は、モデル評価の手順についての理解を促進します。
articles/ai-services/language-service/personally-identifiable-information/includes/development-options.md
Diff
@@ -12,5 +12,5 @@ To use PII detection, you submit text for analysis and handle the API output in
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use personally identifying information detection with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use personally identifying information detection with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate PII detection into your applications using the REST API, or the client library available in various languages. For more information, see the [PII detection quickstart](../quickstart.md). |
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンク修正"
}
Explanation
この変更は、個人を特定できる情報(PII)検出に関する「開発オプション」ドキュメントの一部を更新するために行われました。具体的には、Azure AI Foundryに関するリンクが以下のように修正されました:
- リンク先のファイル名が「what-is-ai-foundary.md」から「what-is-azure-ai-foundary.md」に修正されています。
この変更により、ユーザーは正確かつ最新の情報にアクセスできるようになります。このようなリンクの正確性を保つことは、情報の信頼性を向上させるだけでなく、読者がリソースを適切に活用する助けにもなります。全体として、ドキュメントの整合性を高め、ユーザーエクスペリエンスを向上させる重要な更新です。
articles/ai-services/language-service/personally-identifiable-information/includes/use-language-studio.md
Diff
@@ -8,4 +8,4 @@ ms.custom: include, ignite-2024
---
> [!TIP]
-> You can use [**Azure AI Foundry**](../../../../ai-foundry/what-is-ai-foundry.md) to try summarization without needing to write code.
+> You can use [**Azure AI Foundry**](../../../../ai-foundry/what-is-azure-ai-foundry.md) to try summarization without needing to write code.
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンク修正"
}
Explanation
この変更は、「言語スタジオを使用する」ドキュメントにおいて、Azure AI Foundryに関するリンクの更新を目的としています。具体的には、以下の点が修正されました:
- リンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されています。
この修正により、ユーザーが正しくかつ最新の情報にアクセスできるようになります。リンクの正確性を確保することは重要であり、情報の信頼性を向上させるだけでなく、ユーザーが関連リソースを容易に見つける手助けにもなります。全体として、この更新はドキュメントの整合性を高め、より良いユーザーエクスペリエンスを提供するものです。
articles/ai-services/language-service/personally-identifiable-information/language-support.md
Diff
@@ -190,7 +190,7 @@ Use this article to learn which natural languages are supported by the text PII,
## PII language support
-The Generally Available Conversational PII serivce currently supports English. Preview model version `2023-04-15-preview` supports English, German, Spanish, and French.
+The Generally Available Conversational PII service currently supports English. Preview model version `2023-04-15-preview` supports English, German, Spanish, and French.
---
Summary
{
"modification_type": "minor update",
"modification_title": "文書内の誤字修正"
}
Explanation
この変更は、「言語サポート」ドキュメントにおける誤字を修正するために行われました。具体的には、以下の部分が修正されました:
- 「Conversational PII serivce」という記述が「Conversational PII service」に修正されています。
この修正により、文章の正確性が向上し、読者に対する情報の信頼性が確保されます。正しい表記を使用することで、ユーザーが内容をより理解しやすくし、誤解を避けることができます。このような小さな修正は、ドキュメント全体の品質向上に寄与します。
articles/ai-services/language-service/personally-identifiable-information/overview.md
Diff
@@ -126,5 +126,5 @@ An AI system includes not only the technology, but also the people who use it, t
## Next steps
There are two ways to get started using the entity linking feature:
-* [Azure AI Foundry](../../../ai-foundry/what-is-ai-foundry.md) is a web-based platform that lets you use several Language service features without needing to write code.
+* [Azure AI Foundry](../../../ai-foundry/what-is-azure-ai-foundry.md) is a web-based platform that lets you use several Language service features without needing to write code.
* The [quickstart article](quickstart.md) for instructions on making requests to the service using the REST API and client library SDK.
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンク修正"
}
Explanation
この変更は、「概要」ドキュメントにおけるAzure AI Foundryのリンクを更新するために行われました。具体的には、以下の点が修正されました:
- リンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されています。
この修正により、ユーザーはより正確な情報にアクセスできるようになります。リンクの正確性を維持することは、文書の信頼性を高め、ユーザーが必要なリソースを見つけやすくするために重要です。このような小さな更新でも、全体的なユーザー体験を向上させることにつながります。
articles/ai-services/language-service/sentiment-opinion-mining/includes/development-options.md
Diff
@@ -12,6 +12,6 @@ To use sentiment analysis, you submit raw unstructured text for analysis and han
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate sentiment analysis into your applications using the REST API, or the client library available in a variety of languages. For more information, see the [sentiment analysis quickstart](../quickstart.md). |
| Docker container | Use the available Docker container to [deploy this feature on-premises](../how-to/use-containers.md). These docker containers enable you to bring the service closer to your data for compliance, security, or other operational reasons. |
\ No newline at end of file
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンク修正"
}
Explanation
この変更は、「開発オプション」ドキュメントにおけるAzure AI Foundryのリンクを更新するために行われました。具体的には、次の修正が行われました:
- リンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されています。
この修正により、ユーザーが正確な情報にアクセスできるようになります。リンクの修正は、ドキュメントの中での信頼性を高め、ユーザーが必要なリソースを効果的に探す手助けをします。このような小さな更新は、全体として文書の品質を向上させる重要な要素です。
articles/ai-services/language-service/summarization/includes/development-options.md
Diff
@@ -15,7 +15,7 @@ To use summarization, you submit for analysis and handle the API output in your
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate text summarization into your applications using the REST API, or the client library available in various languages. For more information, see the [summarization quickstart](../quickstart.md). |
@@ -29,7 +29,7 @@ To use summarization, you submit for analysis and handle the API output in your
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate text summarization into your applications using the REST API, or the client library available in various languages. For more information, see the [summarization quickstart](../quickstart.md).
---
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンク修正"
}
Explanation
この変更は、「開発オプション」ドキュメントにおけるAzure AI Foundryに関する情報の更新を目的としています。具体的な修正点は以下の通りです:
- Azure AI Foundryの説明内にあるリンク先が「what-is-ai-foundary.md」から「what-is-azure-ai-foundry.md」に変更されました。
- 上記の変更がドキュメント内の複数の箇所に適用されています(合計で2つの追加と2つの削除が行われました)。
この修正により、ユーザーはAzure AI Foundryに関する正確な情報を取得できるようになります。このような小さな変更でも、文書の正確性を向上させ、ユーザーにとっての利便性を高めることが期待されます。
articles/ai-services/language-service/summarization/includes/use-language-studio.md
Diff
@@ -11,4 +11,4 @@ ms.custom: include, build-2024, ignite-2024
---
> [!TIP]
-> You can use [**Azure AI Foundry**](../../../../ai-foundry/what-is-ai-foundry.md) to try summarization without needing to write code.
+> You can use [**Azure AI Foundry**](../../../../ai-foundry/what-is-azure-ai-foundry.md) to try summarization without needing to write code.
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンクの修正"
}
Explanation
この変更は、「言語スタジオを使用する」ドキュメントにおけるAzure AI Foundryに関するリンクの修正を行ったものです。具体的には、次の点が修正されています:
- Azure AI Foundryに関するリンク先が「what-is-ai-foundry.md」から「what-is-azure-ai-foundry.md」に変更されました。
この更新により、ユーザーは正確かつ最新の情報にアクセスできるようになります。このような小さな修正が、文書の信頼性を向上させ、ユーザーが必要とする情報にスムーズにアクセスできる助けとなります。
articles/ai-services/language-service/text-analytics-for-health/includes/development-options.md
Diff
@@ -13,6 +13,6 @@ To use Text Analytics for health, you submit raw unstructured text for analysis
|Development option |Description |
|---------|---------|
-|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-ai-foundry.md). |
+|Azure AI Foundry | Azure AI Foundry is a web-based platform that lets you use entity linking with text examples with your own data when you sign up. For more information, see the [Azure AI Foundry website](https://ai.azure.com) or [Azure AI Foundry documentation](../../../../ai-foundry/what-is-azure-ai-foundry.md). |
|REST API or Client library (Azure SDK) | Integrate Text Analytics for health into your applications using the REST API, or the client library available in a variety of languages. For more information, see the [Text Analytics for health quickstart](../quickstart.md). |
| Docker container | Use the available Docker container to [deploy this feature on-premises](../how-to/use-containers.md). These docker containers enable you to bring the service closer to your data for compliance, security, or other operational reasons. |
Summary
{
"modification_type": "minor update",
"modification_title": "文書内のリンク修正"
}
Explanation
この変更は、「健康のためのテキスト分析」ドキュメントにおけるAzure AI Foundryに関するリンクを更新したものです。具体的な修正内容は以下の通りです:
- Azure AI Foundryに関するリンクの URL が「what-is-ai-foundary.md」から「what-is-azure-ai-foundry.md」に変更されました。この修正は、文書内の関連情報へのアクセスを正確にするために行われています。
この更新により、ユーザーは最新かつ正確な情報に簡単にアクセスできるようになります。そして、正確な文書情報は、ユーザー体験を向上させ、Azure AI Foundryの利用をサポートします。
articles/ai-services/language-service/tutorials/prompt-flow.md
Diff
@@ -21,7 +21,7 @@ This tutorial teaches you how to use Language in prompt flow utilizing [Azure AI
- An Azure subscription - <a href="https://azure.microsoft.com/free/cognitive-services" target="_blank">Create one for free</a>.
-- You need an Azure AI Foundry hub or permissions to create one. Your user role must be **Azure AI Developer**, **Contributor**, or **Owner** on the hub. For more information, see [hubs](../../../ai-foundry/concepts/ai-resources.md) and [Azure AI roles](../../../ai-foundry/concepts/rbac-ai-foundry.md).
+- You need an Azure AI Foundry hub or permissions to create one. Your user role must be **Azure AI Developer**, **Contributor**, or **Owner** on the hub. For more information, see [hubs](../../../ai-foundry/concepts/ai-resources.md) and [Azure AI roles](../../../ai-foundry/concepts/rbac-azure-ai-foundry.md).
- If your role is **Contributor** or **Owner**, you can [create a hub in this tutorial](#create-a-project-in-azure-ai-foundry-portal).
- If your role is **Azure AI Developer**, the hub must already be created.
Summary
{
"modification_type": "minor update",
"modification_title": "リンク先の修正"
}
Explanation
この変更は、「プロンプトフロー」チュートリアルの文書におけるAzure AI Foundryに関するリンクを修正したものです。具体的には、以下の内容が更新されました:
- 「Azure AI roles」に関するリンクが「rbac-ai-foundry.md」から「rbac-azure-ai-foundry.md」に変更されました。この修正により、ユーザーが役割管理に関する最新の情報にアクセスできるようになっています。
この更新は、正確な情報提供を目的としており、ユーザーがAzure AI Foundryの役割に関する理解を深め、適切にハブを利用できるよう配慮されています。