Diff Insight Report - search

最終更新日: 2025-06-05

利用上の注意

このポストは Microsoft 社の Azure 公式ドキュメント(CC BY 4.0 または MIT ライセンス) をもとに生成AIを用いて翻案・要約した派生作品です。 元の文書は MicrosoftDocs/azure-ai-docs にホストされています。

生成AIの性能には限界があり、誤訳や誤解釈が含まれる可能性があります。 本ポストはあくまで参考情報として用い、正確な情報は必ず元の文書を参照してください。

このポストで使用されている商標はそれぞれの所有者に帰属します。これらの商標は技術的な説明のために使用されており、商標権者からの公式な承認や推奨を示すものではありません。

View Diff on GitHub


# Highlights
この変更において、Azure AI ドキュメントの「検索を始める」セクションに関連する新しい画像が複数追加され、同時にいくつかの画像が削除されました。加えて、いくつかのドキュメントに対する小規模な更新が行われ、ユーザー体験を改善するための調整が行われました。

New features

  • 新しい画像ファイルが追加されました。これには、「ポータル画像の新しいドキュメントインテリジェンスオプション」「コンテンツ抽出」「ドキュメントインテリジェンス」「マルチモーダル埋め込みタイル」「マルチモーダル埋め込みオプション」および「コンテンツのベクタライズ」などがあります。

Breaking changes

  • 2つの既存画像「extract-your-content.png」と「vectorize-enrich-images.png」が削除されました。

Other updates

  • 「image-verbalization-tile.png」の画像の更新と、「search-get-started-portal-image-search.md」「search-get-started-portal-import-vectors.md」「search-query-overview.md」および「toc.yml」ファイルの小規模な更新がありました。

Insights

今回の変更は、Azure AI ドキュメントにおけるユーザー体験を向上させることを目的としています。ビジュアル要素の強化とドキュメントの整合性の向上がそれぞれの側面において実現されています。

ユーザーインターフェースの強化

新しい画像ファイルの追加により、ユーザーがドキュメント内で提示されている情報を視覚的に理解しやすくなっています。特に、Azureポータルでの操作手順が明示され、コンテンツ抽出やベクタライズなどの複雑なプロセスが視覚的に理解できるようになっています。

情報の整理と更新

一方で、不要または冗長となった古い画像ファイルが削除されました。これにより、コンテンツの一貫性が保たれ、ドキュメントの内容がユーザーにとって分かりやすくなっています。このような更新は、ドキュメントの整合性と情報の最新化に寄与しています。

ドキュメントの小規模修正と整合性の向上

小規模ながらも重要なテキストベースの更新により、ドキュメント全体の実用性と可読性が改善されています。クエリーやインデックス作成に関する手順が明確化されており、Azureポータルでの操作をスムーズにすることを目的とした調整が施されています。

これらの変更は、新機能の有効活用と全体的なユーザーエクスペリエンス向上に向けたものです。技術的な内容の理解を助け、実際の操作での役に立つような内容として、ユーザーはこれらの更新を活用することで、Azure AI ドキュメントの幅広い機能を効率的に使いこなすことが期待されます。

Summary Table

Filename Type Title Status A D M
doc-intelligence-options.png new feature ポータル画像の新しいドキュメントインテリジェンスオプションの追加 added 0 0 0
extract-your-content-doc-extraction.png new feature コンテンツ抽出のための新しい画像の追加 added 0 0 0
extract-your-content-doc-intelligence.png new feature ドキュメントインテリジェンスのための新しい画像の追加 added 0 0 0
extract-your-content.png breaking change コンテンツ抽出用画像の削除 removed 0 0 0
image-verbalization-tile.png minor update 画像の更新: イメージバーバライゼーションタイル modified 0 0 0
multimodal-embedding-tile.png new feature 新しい画像の追加: マルチモーダル埋め込みタイル added 0 0 0
multimodal-embeddings-options.png new feature 新しい画像の追加: マルチモーダル埋め込みオプション added 0 0 0
vectorize-enrich-images.png breaking change 画像の削除: ベクタライズされたイメージを充実させる removed 0 0 0
vectorize-your-content.png new feature 新しい画像の追加: コンテンツのベクタライズ added 0 0 0
search-get-started-portal-image-search.md minor update ドキュメントの更新: Azureポータルでのマルチモーダル検索のクイックスタート modified 175 63 238
search-get-started-portal-import-vectors.md minor update ドキュメントの更新: Azureポータルでのベクターのインポートに関するクイックスタート modified 8 12 20
search-query-overview.md minor update クエリーの概要に関するドキュメントの更新 modified 1 1 2
toc.yml minor update 目次ファイルの更新: Azureポータルにおけるインデックス作成の項目を修正 modified 3 3 6

Modified Contents

articles/search/media/search-get-started-portal-images/doc-intelligence-options.png

Summary

{
    "modification_type": "new feature",
    "modification_title": "ポータル画像の新しいドキュメントインテリジェンスオプションの追加"
}

Explanation

この差分では、新しい画像ファイル「doc-intelligence-options.png」が追加されています。この画像は、Azure AI ドキュメントの「検索を始める」セクションに関連しており、ユーザーがドキュメントインテリジェンスのオプションを理解するのに役立つ視覚的なリソースです。追加された画像は、特にポータルの操作手順や機能に関するガイダンスを提供するために重要です。これにより、ユーザーはドキュメントインテリジェンスの機能をより効果的に利用できるようになります。

articles/search/media/search-get-started-portal-images/extract-your-content-doc-extraction.png

Summary

{
    "modification_type": "new feature",
    "modification_title": "コンテンツ抽出のための新しい画像の追加"
}

Explanation

この差分では、新しい画像ファイル「extract-your-content-doc-extraction.png」が追加されています。この画像は、Azure AI ドキュメントの「検索を始める」セクションに関連し、ユーザーがコンテンツを抽出する手順を視覚的に示すために設計されています。画像を追加することで、ユーザーは抽出プロセスをより理解しやすくなり、実際の操作手順を助けるリソースとして機能します。この変更は、ユーザー体験の向上に寄与します。

articles/search/media/search-get-started-portal-images/extract-your-content-doc-intelligence.png

Summary

{
    "modification_type": "new feature",
    "modification_title": "ドキュメントインテリジェンスのための新しい画像の追加"
}

Explanation

この差分では、新しい画像ファイル「extract-your-content-doc-intelligence.png」が追加されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションに関連しており、ドキュメントインテリジェンス機能の使用方法を示すために作成されています。この画像を通じて、ユーザーはドキュメントインテリジェンスの機能に関する具体的な参考資料を得ることができ、操作の理解が深まります。この追加は、ユーザーが機能を効果的に利用できるように支援することを目的としています。

articles/search/media/search-get-started-portal-images/extract-your-content.png

Summary

{
    "modification_type": "breaking change",
    "modification_title": "コンテンツ抽出用画像の削除"
}

Explanation

この差分では、「extract-your-content.png」という画像ファイルが削除されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションに位置しており、コンテンツ抽出のプロセスに関連していました。この削除により、関連するビジュアルコンテンツが失われ、ユーザーがコンテンツ抽出の手順を理解するのが難しくなる可能性があります。この変更は、ドキュメントの整合性や情報の更新を目的としているものの、ユーザー体験に影響を及ぼす可能性があります。

articles/search/media/search-get-started-portal-images/image-verbalization-tile.png

Summary

{
    "modification_type": "minor update",
    "modification_title": "画像の更新: イメージバーバライゼーションタイル"
}

Explanation

この差分では、「image-verbalization-tile.png」という画像ファイルが変更されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションに関連しており、ビジュアルコンテンツの最新化や改善が行われたと考えられます。具体的な変更内容は不明ですが、更新により情報がより正確かつ視覚的に理解しやすくなった可能性があります。このようなマイナーな更新は、ユーザーが必要な情報をよりスムーズに取得できるようにするための重要なステップです。

articles/search/media/search-get-started-portal-images/multimodal-embedding-tile.png

Summary

{
    "modification_type": "new feature",
    "modification_title": "新しい画像の追加: マルチモーダル埋め込みタイル"
}

Explanation

この差分では、「multimodal-embedding-tile.png」という新しい画像ファイルが追加されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションにおいて、マルチモーダル埋め込み技術の理解を促進するための視覚的な補助として機能します。この新しいビジュアルコンテンツの追加により、ユーザーは関連する概念をより効果的に把握でき、全体的なドキュメントの価値が向上することが期待されます。この変更は、新機能の紹介や情報の充実を目的とした重要な更新です。

articles/search/media/search-get-started-portal-images/multimodal-embeddings-options.png

Summary

{
    "modification_type": "new feature",
    "modification_title": "新しい画像の追加: マルチモーダル埋め込みオプション"
}

Explanation

この差分では、「multimodal-embeddings-options.png」という新しい画像ファイルが追加されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションで、マルチモーダル埋め込みのオプションを視覚的に示すもので、ユーザーに対して各オプションの理解を助ける役割を果たします。新しいビジュアルコンテンツの導入により、ユーザーはマルチモーダル埋め込み技術に関する選択肢をより明確に把握することができ、全体的な学習体験が向上することが期待されます。この変更は、情報の充実を目的とした重要な新しさです。

articles/search/media/search-get-started-portal-images/vectorize-enrich-images.png

Summary

{
    "modification_type": "breaking change",
    "modification_title": "画像の削除: ベクタライズされたイメージを充実させる"
}

Explanation

この差分では、「vectorize-enrich-images.png」という画像ファイルが削除されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションで、ベクタライズによる画像の強化に関連する情報を提供していました。画像の削除により、関連するコンテンツの構成や説明が更新される必要が生じるため、ユーザーには新たな文脈を理解させる手間がかかる可能性があります。この変更は、情報の整理や明瞭性を図ることを目的としているため、ドキュメント全体に影響を与える重要な更新です。

articles/search/media/search-get-started-portal-images/vectorize-your-content.png

Summary

{
    "modification_type": "new feature",
    "modification_title": "新しい画像の追加: コンテンツのベクタライズ"
}

Explanation

この差分では、「vectorize-your-content.png」という新しい画像ファイルが追加されました。この画像は、Azure AI ドキュメントの「検索を始める」セクションにおいて、ユーザーにコンテンツをベクタライズする方法を視覚的に提示するために作成されています。新しい画像の導入により、ユーザーはベクタライズのプロセスやその利点をより直感的に理解できるようになり、関連する情報を効果的に吸収する手助けとなります。この変更は、ドキュメントの内容を強化し、学習体験を向上させることを目的としています。

articles/search/search-get-started-portal-image-search.md

Diff
@@ -1,36 +1,66 @@
 ---
 title: "Quickstart: Multimodal Search in the Azure portal"
 titleSuffix: Azure AI Search
-description: Learn how to search for multimodal content on an Azure AI Search index in the Azure portal. Run a wizard to generate natural-language descriptions of images and vectorize both text and images, and then use Search Explorer to query your multimodal index.
+description: Learn how to index and search for multimodal content in the Azure portal. Run a wizard to extract and embed both text and images, and then use Search Explorer to query your multimodal index.
 author: haileytap
 ms.author: haileytapia
 ms.service: azure-ai-search
 ms.topic: quickstart
-ms.date: 05/22/2025
+ms.date: 06/04/2025
 ms.custom:
   - references_regions
 ---
 
 # Quickstart: Search for multimodal content in the Azure portal
 
-In this quickstart, you use the **Import and vectorize data** wizard in the Azure portal to get started with [multimodal search](multimodal-search-overview.md). The wizard simplifies the process of extracting page text and inline images from documents, describing images in natural language, vectorizing image descriptions and text, and storing images for later retrieval.
+In this quickstart, you use the **Import and vectorize data** wizard in the Azure portal to get started with [multimodal search](multimodal-search-overview.md). The wizard simplifies the process of extracting, chunking, vectorizing, and loading both text and images into a searchable index.
 
-The sample data consists of a multimodal PDF in the [azure-search-sample-data](https://github.com/Azure-Samples/azure-search-sample-data/tree/main/sustainable-ai-pdf) repo, but you can use different files and still follow this quickstart.
+Unlike [Quickstart: Vector search in the Azure portal](search-get-started-portal-import-vectors.md), which processes simple text-containing images, this quickstart supports advanced image processing for multimodal RAG scenarios.
+
+This quickstart uses a multimodal PDF from the [azure-search-sample-data](https://github.com/Azure-Samples/azure-search-sample-data/tree/main/sustainable-ai-pdf) repo. However, you can use different files and still complete this quickstart.
 
 ## Prerequisites
 
 + An Azure account with an active subscription. [Create an account for free](https://azure.microsoft.com/free/?WT.mc_id=A261C142F).
 
-+ An [Azure Storage account](/azure/storage/common/storage-account-create). Use Azure Blob Storage or Azure Data Lake Storage Gen2 (storage account with a hierarchical namespace) on a standard performance (general-purpose v2) account. Access tiers can be hot, cool, or cold.
++ An [Azure AI Search service](search-create-service-portal.md). We recommend the Basic tier or higher.
 
-+ An [Azure AI services multi-service account](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) in East US, West Europe, or North Central US.
++ An [Azure Storage account](/azure/storage/common/storage-account-create). Use Azure Blob Storage or Azure Data Lake Storage Gen2 (storage account with a hierarchical namespace) on a standard performance (general-purpose v2) account. Access tiers can be hot, cool, or cold.
 
-+ An [Azure AI Search service](search-create-service-portal.md) in the same region as your Azure AI multi-service account.
++ A [supported extraction method](#supported-extraction-methods).
 
-+ An [Azure OpenAI resource](/azure/ai-services/openai/how-to/create-resource).
++ A [supported embedding method](#supported-embedding-methods).
 
 + Familiarity with the wizard. See [Import data wizards in the Azure portal](search-import-data-portal.md).
 
+### Supported extraction methods
+
+For content extraction, you can choose either default extraction via Azure AI Search or enhanced extraction via [Azure AI Document Intelligence](/azure/ai-services/document-intelligence/overview). The following table describes both extraction methods.
+
+| Method | Description |
+|--|--|
+| Default extraction | Extracts location metadata from PDF images only. Doesn't require another Azure AI resource. |
+| Enhanced extraction | Extracts location metadata from text and images for multiple document types. Requires an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>1</sup> in a [supported region](cognitive-search-skill-document-intelligence-layout.md#supported--regions). |
+
+<sup>1</sup> For billing purposes, you must [attach your multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
+
+### Supported embedding methods
+
+For content embedding, you can choose either image verbalization (followed by text vectorization) or multimodal embeddings. Deployment instructions for the models are provided in a [later section](#deploy-models). The following table describes both embedding methods.
+
+| Method | Description | Supported models |
+|--|--|--|
+| Image verbalization | Uses an LLM to generate natural-language descriptions of images, and then uses an embedding model to vectorize plain text and verbalized images.<br><br>Requires an [Azure OpenAI resource](/azure/ai-services/openai/how-to/create-resource) <sup>1, 2</sup> or [Azure AI Foundry project](/azure/ai-foundry/how-to/create-projects).<br><br>For text vectorization, you can also use an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>3</sup> in a [supported region](cognitive-search-skill-vision-vectorize.md). | LLMs:<br>GPT-4o<br>GPT-4o-mini<br>phi-4 <sup>4</sup><br><br>Embedding models:<br>text-embedding-ada-002<br>text-embedding-3-small<br>text-embedding-3-large |
+| Multimodal embeddings | Uses an embedding model to directly vectorize both text and images.<br><br>Requires an [Azure AI Foundry project](/azure/ai-foundry/how-to/create-projects) or [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>3</sup> in a [supported region](cognitive-search-skill-vision-vectorize.md). | Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual |
+
+<sup>1</sup> The endpoint of your Azure OpenAI resource must have a [custom subdomain](/azure/ai-services/cognitive-services-custom-subdomains), such as `https://my-unique-name.openai.azure.com`. If you created your resource in the [Azure portal](https://portal.azure.com/), this subdomain was automatically generated during resource setup.
+
+<sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. You must create an Azure OpenAI resource in the Azure portal.
+
+<sup>3</sup> For billing purposes, you must [attach your multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
+
+<sup>4</sup> `phi-4` is only available to Azure AI Foundry projects.
+
 ### Public endpoint requirements
 
 All of the preceding resources must have public access enabled so that the Azure portal nodes can access them. Otherwise, the wizard fails. After the wizard runs, you can enable firewalls and private endpoints on the integration components for security. For more information, see [Secure connections in the import wizards](search-import-data-portal.md#secure-connections).
@@ -45,7 +75,11 @@ If you're starting with the free service, you're limited to three indexes, three
 
 Before you begin, make sure you have permissions to access content and operations. We recommend Microsoft Entra ID authentication and role-based access for authorization. You must be an **Owner** or **User Access Administrator** to assign roles. If roles aren't feasible, you can use [key-based authentication](search-security-api-keys.md) instead.
 
-Configure access to each resource identified in this section.
+Configure the [required roles](#required-roles) and [conditional roles](#conditional-roles) identified in this section.
+
+### Required roles
+
+Azure AI Search and Azure Storage are required for all multimodal search scenarios.
 
 ### [**Azure AI Search**](#tab/search-perms)
 
@@ -67,28 +101,42 @@ On your Azure AI Search service:
 
 ### [**Azure Storage**](#tab/storage-perms)
 
-Azure Storage is both the data source for your documents and the destination for extracted images. Your search service requires access to these storage containers, which you create in the next section of this quickstart.
+Azure Storage is both the data source for your documents and the destination for extracted images. Your search service requires access to these storage containers, which you create in the next section.
 
 On your Azure Storage account:
 
 + Assign **Storage Blob Data Contributor** to your [search service identity](search-howto-managed-identities-data-sources.md#create-a-system-managed-identity).
 
-### [**Azure AI services**](#tab/ai-services-perms)
-
-An Azure AI multi-service account provides multiple Azure AI services, including [Azure AI Document Intelligence](/azure/ai-services/document-intelligence/overview) for content extraction and semantic chunking. Your search service requires access to call the [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md).
+---
 
-On your Azure AI multi-service account:
+### Conditional roles
 
-+ Assign **Cognitive Services User** to your [search service identity](search-howto-managed-identities-data-sources.md#create-a-system-managed-identity).
+The following tabs cover all wizard-compatible resources for multimodal search. Select only the tabs that apply to your chosen [extraction method](#supported-extraction-methods) and [embedding method](#supported-embedding-methods).
 
 ### [**Azure OpenAI**](#tab/openai-perms)
 
-Azure OpenAI provides large language models (LLMs) for image verbalization and embedding models for text and image vectorization. Your search service requires access to call the [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) and [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md).
+Azure OpenAI provides LLMs for image verbalization and embedding models for text and image vectorization. Your search service requires access to call the [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) and [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md).
 
 On your Azure OpenAI resource:
 
 + Assign **Cognitive Services OpenAI User** to your [search service identity](search-howto-managed-identities-data-sources.md#create-a-system-managed-identity).
 
+### [**Azure AI Foundry**](#tab/ai-foundry-perms)
+
+The Azure AI Foundry model catalog provides LLMs for image verbalization and embedding models for text and image vectorization. Your search service requires access to call the [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) and [AML skill](cognitive-search-aml-skill.md).
+
+On your Azure AI Foundry project:
+
++ Assign **Azure AI Project Manager** to your [search service identity](search-howto-managed-identities-data-sources.md#create-a-system-managed-identity).
+
+### [**Azure AI services**](#tab/ai-services-perms)
+
+An Azure AI multi-service resource provides multiple Azure AI services, including [Azure AI Document Intelligence](/azure/ai-services/document-intelligence/overview) for content extraction and [Azure AI Vision](/azure/ai-services/computer-vision/overview) for content embedding. Your search service requires access to call the [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md) and [Azure AI Vision multimodal embeddings skill](cognitive-search-skill-vision-vectorize.md).
+
+On your Azure AI multi-service resource:
+
++ Assign **Cognitive Services User** to your [search service identity](search-howto-managed-identities-data-sources.md#create-a-system-managed-identity).
+
 ---
 
 ## Prepare sample data
@@ -107,27 +155,20 @@ To prepare the sample data for this quickstart:
 
 ## Deploy models
 
-The wizard requires an LLM to verbalize images and an embedding model to generate vector representations of text and verbalized text content. Both models are available through Azure OpenAI.
-
-To deploy the models for this quickstart:
-
-1. Sign in to the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) and select your Azure OpenAI resource.
-
-1. From the left pane, select **Model catalog**.
+The wizard offers several options for content embedding. Image verbalization requires an LLM to describe images and an embedding model to vectorize text and image content, while direct multimodal embeddings only require an embedding model. These models are available through Azure OpenAI and Azure AI Foundry.
 
-1. Deploy one of the following LLMs:
+> [!NOTE]
+> If you're using Azure AI Vision, skip this step. The multimodal embeddings are built into your Azure AI multi-service resource and don't require model deployment.
 
-   + gpt-4o
-
-   + gpt-4o-mini
+To deploy the models for this quickstart:
 
-1. Deploy one of the following embedding models:
+1. Sign in to the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs).
 
-   + text-embedding-ada-002
+1. Select your Azure OpenAI resource or Azure AI Foundry project.
 
-   + text-embedding-3-small
+1. From the left pane, select **Model catalog**.
 
-   + text-embedding-3-large
+1. Deploy the models required for your chosen [embedding method](#supported-embedding-methods).
 
 ## Start the wizard
 
@@ -165,43 +206,65 @@ To connect to your data:
 
 ## Extract your content
 
-The next step is to select a method for document cracking and chunking.
+Depending on your chosen [extraction method](#supported-extraction-methods), the wizard provides configuration options for document cracking and chunking.
+
+### [**Default extraction**](#tab/document-extraction)
+
+The default method calls the [Document Extraction skill](cognitive-search-skill-document-extraction.md) to extract text content and generate normalized images from your documents. The [Text Split skill](cognitive-search-skill-textsplit.md) is then called to split the extracted text content into pages.
 
-Your Azure AI multi-service account provides access to the [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md), which extracts page numbers, bounding polygons, and other location metadata from both text and images. The Document Layout skill also breaks documents into smaller, more manageable chunks.
+To use the Document Extraction skill:
+
+1. On the **Content extraction** page, select **Default**.
+
+   :::image type="content" source="media/search-get-started-portal-images/extract-your-content-doc-extraction.png" alt-text="Screenshot of the wizard page with the default method selected for content extraction." border="true" lightbox="media/search-get-started-portal-images/extract-your-content-doc-extraction.png":::
+
+1. Select **Next**.
+
+### [**Enhanced extraction**](#tab/document-intelligence)
+
+Your Azure AI multi-service resource provides access to [Azure AI Document Intelligence](/azure/ai-services/document-intelligence/overview), which calls the [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md) to recognize document structure and extract text and images relationally. It does so by attaching location metadata, such as page numbers and bounding polygons, to each image. The Document Layout skill also breaks text content into smaller, more manageable chunks.
 
 To use the Document Layout skill:
 
 1. On the **Content extraction** page, select **AI Document Intelligence**.
 
-1. Specify your Azure subscription and Azure AI multi-service account.
+   :::image type="content" source="media/search-get-started-portal-images/extract-your-content-doc-intelligence.png" alt-text="Screenshot of the wizard page with Azure AI Document Intelligence selected for content extraction." border="true" lightbox="media/search-get-started-portal-images/extract-your-content-doc-intelligence.png":::
+
+1. Specify your Azure subscription and multi-service resource.
 
 1. For the authentication type, select **System assigned identity**.
 
 1. Select the checkbox that acknowledges the billing effects of using these resources.
 
-   :::image type="content" source="media/search-get-started-portal-images/extract-your-content.png" alt-text="Screenshot of the wizard page for selecting a content extraction method." border="true" lightbox="media/search-get-started-portal-images/extract-your-content.png":::
+   :::image type="content" source="media/search-get-started-portal-images/doc-intelligence-options.png" alt-text="Screenshot of the wizard page with configuration options for Azure AI Document Intelligence selected." border="true" lightbox="media/search-get-started-portal-images/doc-intelligence-options.png":::
 
 1. Select **Next**.
 
+---
+
 ## Embed your content
 
-During this step, the wizard calls two skills to generate descriptive text for images (image verbalization) and vector embeddings for text and images.
+During this step, the wizard uses your chosen [embedding method](#supported-embedding-methods) to generate vector representations of both text and images.
+
+### [**Image verbalization**](#tab/image-verbalization)
 
-For image verbalization, the [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) uses the LLM you deployed to analyze each extracted image and produce a natural-language description.
+The wizard calls one skill to create descriptive text for images (image verbalization) and another skill to create vector embeddings for both text and images.
 
-For text and image embeddings, the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) uses the embedding model you deployed to convert the text chunks and verbalized descriptions into high-dimensional vectors. These vectors enable similarity and hybrid retrieval.
+For image verbalization, the [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) uses your deployed LLM to analyze each extracted image and produce a natural-language description.
 
-To use the GenAI Prompt skill and Azure OpenAI Embedding skill:
+For embeddings, the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md), [AML skill](cognitive-search-aml-skill.md), or [Azure AI Vision multimodal embeddings skill](cognitive-search-skill-vision-vectorize.md) uses your deployed embedding model to convert text chunks and verbalized descriptions into high-dimensional vectors. These vectors enable similarity and hybrid retrieval.
+
+To use the skills for image verbalization:
 
 1. On the **Content embedding** page, select **Image Verbalization**.
 
    :::image type="content" source="media/search-get-started-portal-images/image-verbalization-tile.png" alt-text="Screenshot of the Image Verbalization tile in the wizard." border="true" lightbox="media/search-get-started-portal-images/image-verbalization-tile.png":::
 
 1. On the **Image Verbalization** tab:
 
-   1. For the kind, select **Azure OpenAI**.
+   1. For the kind, select your LLM provider: **Azure OpenAI** or **AI Foundry Hub catalog models**.
 
-   1. Specify your Azure subscription, Azure OpenAI resource, and LLM deployment.
+   1. Specify your Azure subscription, resource, and LLM deployment.
 
    1. For the authentication type, select **System assigned identity**.
 
@@ -211,9 +274,9 @@ To use the GenAI Prompt skill and Azure OpenAI Embedding skill:
 
 1. On the **Text Vectorization** tab:
 
-   1. For the kind, select **Azure OpenAI**.
+   1. For the kind, select your model provider: **Azure OpenAI**, **AI Foundry Hub catalog models**, or **AI Vision vectorization**.
 
-   1. Specify your Azure subscription, Azure OpenAI resource, and embedding model deployment.
+   1. Specify your Azure subscription, resource, and embedding model deployment.
 
    1. For the authentication type, select **System assigned identity**.
 
@@ -223,6 +286,32 @@ To use the GenAI Prompt skill and Azure OpenAI Embedding skill:
 
 1. Select **Next**.
 
+### [**Multimodal embeddings**](#tab/multimodal-embeddings)
+
+If the raw content of your data includes text, the wizard calls the [AML skill](cognitive-search-aml-skill.md) or [Azure AI Vision multimodal embeddings skill](cognitive-search-skill-vision-vectorize.md) to vectorize it. The same embedding skill is used to generate vector representations of images.
+
+The wizard also calls the [Shaper skill](cognitive-search-skill-shaper.md) to enrich the output with metadata, such as page numbers. This metadata is useful for associating vectorized content with its original context in the document.
+
+To use the skills for multimodal embeddings:
+
+1. On the **Content embedding** page, select **Multimodal Embedding**.
+
+   :::image type="content" source="media/search-get-started-portal-images/multimodal-embedding-tile.png" alt-text="Screenshot of the Multimodal Embedding tile in the wizard." border="true" lightbox="media/search-get-started-portal-images/multimodal-embedding-tile.png":::
+
+1. For the kind, select your model provider: **AI Foundry Hub catalog models** or **AI Vision vectorization**.
+
+   <!-- If it's unavailable, make sure your Azure AI Search service and Azure AI multi-service account are both in a region that [supports the AI Vision multimodal APIs](/azure/ai-services/computer-vision/how-to/image-retrieval). -->
+
+1. Specify your Azure subscription, resource, and embedding model deployment.
+
+1. Select the checkbox that acknowledges the billing effects of using this resource.
+
+   :::image type="content" source="media/search-get-started-portal-images/multimodal-embeddings-options.png" alt-text="Screenshot of the wizard page for vectorizing text and images." border="true" lightbox="media/search-get-started-portal-images/multimodal-embeddings-options.png":::
+
+1. Select **Next**.
+
+---
+
 ## Store the extracted images
 
 The next step is to send images extracted from your documents to Azure Storage. In Azure AI Search, this secondary storage is known as a [knowledge store](knowledge-store-concept-intro.md).
@@ -245,14 +334,14 @@ On the **Advanced settings** page, you can optionally add fields to the index sc
 
 | Field | Applies to | Description | Attributes |
 |--|--|--|--|
-| content_id | Text and image vectors | String field. Document key for the index. | Searchable, retrievable, sortable, filterable, and facetable. |
-| document_title | Text and image vectors | String field. Human-readable document title, page title, or page number. | Searchable, retrievable, sortable, filterable, and facetable. |
+| content_id | Text and image vectors | String field. Document key for the index. | Retrievable, sortable, and searchable. |
+| document_title | Text and image vectors | String field. Human-readable document title. | Retrievable and searchable. |
 | text_document_id | Text vectors | String field. Identifies the parent document from which the text chunk originates. | Retrievable and filterable. |
-| image_document_id | Image vectors | String field. Identifies the parent document from which the image originates. | Searchable, retrievable, sortable, filterable, and facetable. |
-| content_text | Text vectors | String field. Human-readable version of the text chunk. | Searchable, retrievable, sortable, filterable, and facetable. |
-| content_embedding | Image vectors | Collection(Edm.Single). Vector representation of the image verbalization. | Searchable and retrievable. |
-| content_path | Text and image vectors | String field. Path to the content in the storage container. | Retrievable, sortable, filterable, and facetable. |
-| locationMetadata | Text and image vectors | Edm.ComplexType. Contains metadata about the content's location. | Varies by field. |
+| image_document_id | Image vectors | String field. Identifies the parent document from which the image originates. | Retrievable and filterable. |
+| content_text | Text vectors | String field. Human-readable version of the text chunk. | Retrievable and searchable. |
+| content_embedding | Text and image vectors | Collection(Edm.Single). Vector representation of text and images. | Retrievable and searchable. |
+| content_path | Text and image vectors | String field. Path to the content in the storage container. | Retrievable and searchable. |
+| locationMetadata | Image vectors | Edm.ComplexType. Contains metadata about the image's location in the documents. | Varies by field. |
 
 You can't modify the generated fields or their attributes, but you can add fields if your data source provides them. For example, Azure Blob Storage provides a collection of metadata fields.
 
@@ -264,9 +353,6 @@ To add fields to the index schema:
 
 1. Select a source field from the available fields, enter a field name for the index, and accept (or override) the default data type.
 
-   > [!NOTE]
-   > Metadata fields are searchable but not retrievable, filterable, facetable, or sortable.
-
 1. If you want to restore the schema to its original version, select **Reset**.
 
 ## Schedule indexing
@@ -303,13 +389,11 @@ When the wizard completes the configuration, it creates the following objects:
 
 + A skillset with the following skills:
 
-  + The [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md) splits documents into text chunks and extracts images with location data.
+  + The [Document Extraction skill](cognitive-search-skill-document-extraction.md) or [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md) extracts text and images from source documents. The [Text Split skill](cognitive-search-skill-textsplit.md) accompanies the Document Extraction skill for data chunking, while the Document Layout skill has built-in chunking.
 
-  + The [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) generates natural-language descriptions (verbalizations) of images.
+  + The [GenAI Prompt skill](cognitive-search-skill-genai-prompt.md) verbalizes images in natural language. If you're using direct multimodal embeddings, this skill is absent.
 
-  + The [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) vectorizes each text chunk.
-
-  + The [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) is called again to vectorize each image verbalization.
+  + The [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md), [AML skill](cognitive-search-aml-skill.md), or [Azure AI Vision multimodal embeddings skill](cognitive-search-skill-vision-vectorize.md) is called once for text vectorization and once for image vectorization.
 
   + The [Shaper skill](cognitive-search-skill-shaper.md) enriches the output with metadata and creates new images with contextual information.
 
@@ -318,9 +402,9 @@ When the wizard completes the configuration, it creates the following objects:
 
 ## Check results
 
-This quickstart creates a multimodal index that supports [hybrid search](hybrid-search-overview.md) over both text and verbalized images. However, it doesn't support images as query inputs, which requires integrated vectorization using an embedding skill and an equivalent vectorizer. For more information, see [Query with Search explorer](search-explorer.md).
+This quickstart creates a multimodal index that supports [hybrid search](hybrid-search-overview.md) over both text and images. Unless you use direct multimodal embeddings, the index doesn't accept images as query inputs, which requires the [AML skill](cognitive-search-aml-skill.md) or [Azure AI Vision multimodal embeddings skill](cognitive-search-skill-vision-vectorize.md) with an equivalent vectorizer. For more information, see [Configure a vectorizer in a search index](vector-search-how-to-configure-vectorizer.md).
 
-Hybrid search is a combination of full-text queries and vector queries. When you issue a hybrid query, the search engine computes the semantic similarity between your query and the indexed vectors and ranks the results accordingly. For the index created in this quickstart, the results surface content from the `content_text` field that closely aligns with your query.
+Hybrid search combines full-text queries and vector queries. When you issue a hybrid query, the search engine computes the semantic similarity between your query and the indexed vectors and ranks the results accordingly. For the index created in this quickstart, the results surface content from the `content_text` field that closely aligns with your query.
 
 To query your multimodal index:
 
@@ -340,12 +424,40 @@ To query your multimodal index:
 
    :::image type="content" source="media/search-get-started-portal-images/search-button.png" alt-text="Screenshot of the Search button in Search Explorer." border="true" lightbox="media/search-get-started-portal-images/search-button.png":::
 
-   The results should include text and image content related to `energy` in your index. Highlights from relevant passages and image verbalizations appear in `@search.captions`, helping you quickly identify matches to your query.
+   The JSON results should include text and image content related to `energy` in your index. If you enabled semantic ranker, the `@search.answers` array provides concise, high-confidence [semantic answers](semantic-answers.md) to help you quickly identify relevant matches.
+
+   ```json
+   "@search.answers": [
+      {
+         "key": "a71518188062_aHR0cHM6Ly9oYWlsZXlzdG9yYWdlLmJsb2IuY29yZS53aW5kb3dzLm5ldC9tdWx0aW1vZGFsLXNlYXJjaC9BY2NlbGVyYXRpbmctU3VzdGFpbmFiaWxpdHktd2l0aC1BSS0yMDI1LnBkZg2_normalized_images_7",
+         "text": "A vertical infographic consisting of three sections describing the roles of AI in sustainability:  1. **Measure, predict, and optimize complex systems**: AI facilitates analysis, modeling, and optimization in areas like energy distribution, resource allocation, and environmental monitoring. **Accelerate the development of sustainability solution...",
+         "highlights": "A vertical infographic consisting of three sections describing the roles of AI in sustainability:  1. **Measure, predict, and optimize complex systems**: AI facilitates analysis, modeling, and optimization in areas like<em> energy distribution, </em>resource<em> allocation, </em>and environmental monitoring. **Accelerate the development of sustainability solution...",
+         "score": 0.9950000047683716
+      },
+      {
+         "key": "1cb0754930b6_aHR0cHM6Ly9oYWlsZXlzdG9yYWdlLmJsb2IuY29yZS53aW5kb3dzLm5ldC9tdWx0aW1vZGFsLXNlYXJjaC9BY2NlbGVyYXRpbmctU3VzdGFpbmFiaWxpdHktd2l0aC1BSS0yMDI1LnBkZg2_text_sections_5",
+         "text": "...cross-laminated timber.8 Through an agreement with Brookfield, we aim  10.5 gigawatts (GW) of renewable energy to the grid.910.5 GWof new renewable energy capacity to be developed across the United States and Europe.Play 4 Advance AI policy principles and governance for sustainabilityWe advocated for policies that accelerate grid decarbonization",
+         "highlights": "...cross-laminated timber.8 Through an agreement with Brookfield, we aim <em> 10.5 gigawatts (GW) of renewable energy </em>to the<em> grid.910.5 </em>GWof new<em> renewable energy </em>capacity to be developed across the United States and Europe.Play 4 Advance AI policy principles and governance for sustainabilityWe advocated for policies that accelerate grid decarbonization",
+         "score": 0.9890000224113464
+      },
+      {
+         "key": "1cb0754930b6_aHR0cHM6Ly9oYWlsZXlzdG9yYWdlLmJsb2IuY29yZS53aW5kb3dzLm5ldC9tdWx0aW1vZGFsLXNlYXJjaC9BY2NlbGVyYXRpbmctU3VzdGFpbmFiaWxpdHktd2l0aC1BSS0yMDI1LnBkZg2_text_sections_50",
+         "text": "ForewordAct... Similarly, we have restored degraded stream ecosystems near our datacenters from Racine, Wisconsin120 to Jakarta, Indonesia.117INNOVATION SPOTLIGHTAI-powered Community Solar MicrogridsDeveloping energy transition programsWe are co-innovating with communities to develop energy transition programs that align their goals with broader s.",
+         "highlights": "ForewordAct... Similarly, we have restored degraded stream ecosystems near our datacenters from Racine, Wisconsin120 to Jakarta, Indonesia.117INNOVATION SPOTLIGHTAI-powered Community<em> Solar MicrogridsDeveloping energy transition programsWe </em>are co-innovating with communities to develop<em> energy transition programs </em>that align their goals with broader s.",
+          "score": 0.9869999885559082
+      }
+   ]
+   ```
 
 ## Clean up resources
 
 This quickstart uses billable Azure resources. If you no longer need the resources, delete them from your subscription to avoid charges.
 
-## Next step
+## Next steps
+
+This quickstart introduced you to the **Import and vectorize data** wizard, which creates all of the necessary objects for multimodal search. To explore each step in detail, see the following tutorials:
 
-This quickstart introduced you to the **Import and vectorize data wizard**, which creates all of the necessary objects for multimodal search. To explore each step in detail, see [Tutorial: Index mixed content using image verbalizations and the Document Layout skill](tutorial-document-layout-image-verbalization.md).
++ [Tutorial: Image verbalization and Document Extraction skill](tutorial-document-extraction-image-verbalization.md)
++ [Tutorial: Image verbalization and Document Layout skill](tutorial-document-layout-image-verbalization.md)
++ [Tutorial: Multimodal embeddings and Document Extraction skill](tutorial-document-extraction-multimodal-embeddings.md)
++ [Tutorial: Multimodal embeddings and Document Layout skill](tutorial-document-layout-multimodal-embeddings.md)

Summary

{
    "modification_type": "minor update",
    "modification_title": "ドキュメントの更新: Azureポータルでのマルチモーダル検索のクイックスタート"
}

Explanation

この差分では、「search-get-started-portal-image-search.md」というドキュメントに対する重要な変更が加えられました。更新内容には、マルチモーダルコンテンツのインデックス作成および検索手順の改訂が含まれており、特にデータの抽出や埋め込みに関する説明が改善されています。具体的には、データを抽出し、インデックスにロードするプロセスが詳細化され、さらに Azure AI Document Intelligence を利用した高機能な抽出方法が追加されています。

また、手順の簡略化や新しい条件付きロールの指定、埋め込み方法に関する明確なガイドラインが盛り込まれ、利用者がウェブポータルでの操作をよりスムーズに行えるようになっています。これにより、ユーザーは Azure ポータルでのマルチモーダル検索を効果的に活用できるようになります。全体として、ドキュメントの可読性と実用性が向上し、利用者が新機能を活用しやすくなっています。

articles/search/search-get-started-portal-import-vectors.md

Diff
@@ -9,14 +9,14 @@ ms.custom:
   - build-2024
   - ignite-2024
 ms.topic: quickstart
-ms.date: 05/22/2025
+ms.date: 06/04/2025
 ---
 
 # Quickstart: Vectorize text in the Azure portal
 
-In this quickstart, you use the **Import and vectorize data** wizard in the Azure portal to get started with [integrated vectorization](vector-search-integrated-vectorization.md). The wizard chunks your content and calls an embedding model to vectorize content during indexing and for queries.
+In this quickstart, you use the **Import and vectorize data** wizard in the Azure portal to get started with [integrated vectorization](vector-search-integrated-vectorization.md). The wizard chunks your content and calls an embedding model to vectorize the chunks at indexing and query time.
 
-The sample data for this quickstart consists of text-based PDFs, but you can also use images and follow this quickstart to vectorize them.
+This quickstart uses text-based PDFs from the [azure-search-sample-data](https://github.com/Azure-Samples/azure-search-sample-data/tree/main/sustainable-ai-pdf) repo. However, you can use images and still complete this quickstart.
 
 ## Prerequisites
 
@@ -52,9 +52,9 @@ For integrated vectorization, you must use one of the following embedding models
 
 <sup>1</sup> The endpoint of your Azure OpenAI resource must have a [custom subdomain](/azure/ai-services/cognitive-services-custom-subdomains), such as `https://my-unique-name.openai.azure.com`. If you created your resource in the [Azure portal](https://portal.azure.com/), this subdomain was automatically generated during resource setup.
 
-<sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. Only Azure OpenAI resources created in the Azure portal are compatible with the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) integration.
+<sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. Only Azure OpenAI resources created in the Azure portal are compatible with the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md).
 
-<sup>3</sup> For billing purposes, you must [attach your Azure AI multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
+<sup>3</sup> For billing purposes, you must [attach your multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
 
 <sup>4</sup> The Azure AI Vision multimodal embedding model is available in [select regions](/azure/ai-services/computer-vision/overview-image-analysis#region-availability).
 
@@ -265,19 +265,15 @@ For the model catalog, you should have an [Azure AI Foundry project](/azure/ai-f
 
 ## Start the wizard
 
+To start the wizard for vector search:
+
 1. Sign in to the [Azure portal](https://portal.azure.com/) and select your Azure AI Search service.
 
 1. On the **Overview** page, select **Import and vectorize data**.
 
    :::image type="content" source="media/search-get-started-portal-import-vectors/command-bar.png" alt-text="Screenshot of the command to open the wizard for importing and vectorizing data.":::
 
-1. Select your data source:
-
-   + Azure Blob Storage
-
-   + ADLS Gen2
-
-   + OneLake
+1. Select your data source: **Azure Blob Storage**, **ADLS Gen2**, or **OneLake**.
 
 1. Select **RAG**.
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "ドキュメントの更新: Azureポータルでのベクターのインポートに関するクイックスタート"
}

Explanation

この差分では、「search-get-started-portal-import-vectors.md」というドキュメントに対して小規模な修正が行われました。内容は、Azureポータルにおける「データのインポートとベクタライズ」ウィザードを使用する手順の明確化を目的としており、いくつかの文言が修正され、情報が整理されています。

主な変更点には、ウィザードの使用方法に関する利用者への説明の改善、具体的にはサンプルデータとしてのPDFファイルの引用方法や、サポートされるデータソースの選択肢がより明確に記述されています。これにより、ユーザーは必要な手順を理解しやすくなり、作業をスムーズに進めることができます。また、日付の更新も含まれており、情報が最新の状態になっています。全体として、ドキュメントの読みやすさと実用性が向上しています。

articles/search/search-query-overview.md

Diff
@@ -96,4 +96,4 @@ For a closer look at query implementation, review the examples for each syntax.
 
 + [Simple query examples](search-query-simple-examples.md)
 + [Lucene syntax query examples for building advanced queries](search-query-lucene-examples.md)
-+ [How full text search works in Azure AI Search](search-lucene-query-architecture.md)git
++ [How full text search works in Azure AI Search](search-lucene-query-architecture.md)

Summary

{
    "modification_type": "minor update",
    "modification_title": "クエリーの概要に関するドキュメントの更新"
}

Explanation

この差分では、「search-query-overview.md」というドキュメントの内容に小規模な変更が加えられました。主に、関連するリンクの並びに対する修正が行われています。具体的には、フルテキスト検索の動作に関する説明のリンクが、誤って追加された「git」というテキストが削除され、正常なリンク形式に戻されています。

この修正により、ドキュメントの整合性が向上し、ユーザーが関連情報にアクセスしやすくなっています。このような修正は、ドキュメント全体の信頼性を保つために重要であり、利用者の利便性が増す結果となります。全体として、内容の明瞭さと正確さが強化されています。

articles/search/toc.yml

Diff
@@ -32,11 +32,11 @@ items:
     href: search-get-started-rbac.md
   - name: Azure portal
     items:
-    - name: Keyword search wizard
+    - name: Create a search index
       href: search-get-started-portal.md
-    - name: RAG wizard
+    - name: Create a vector index
       href: search-get-started-portal-import-vectors.md
-    - name: Multimodal RAG wizard
+    - name: Create a multimodal index
       href: search-get-started-portal-image-search.md
     - name: Create a demo app
       href: search-create-app-portal.md

Summary

{
    "modification_type": "minor update",
    "modification_title": "目次ファイルの更新: Azureポータルにおけるインデックス作成の項目を修正"
}

Explanation

この差分では、「toc.yml」という目次ファイルに対して小規模な変更が施されています。具体的には、Azureポータルに関連する各ウィザードの名称が修正され、より正確な表現に更新されています。

変更点には、「Keyword search wizard」「RAG wizard」「Multimodal RAG wizard」という項目がそれぞれ、「Create a search index」「Create a vector index」「Create a multimodal index」という新しい名称に置き換えられています。これにより、それぞれのウィザードの機能や目的が一層明確になり、ユーザーが必要な情報にアクセスしやすくなっています。

これらの修正は、ドキュメントの構造を整理し、利用者が適切なセクションに迅速に到達できるようにするために重要です。また、最新の情報に基づいた正確なナビゲーションが可能となり、全体的なユーザーエクスペリエンスが向上しています。