Diff Insight Report - search

最終更新日: 2025-06-12

利用上の注意

このポストは Microsoft 社の Azure 公式ドキュメント(CC BY 4.0 または MIT ライセンス) をもとに生成AIを用いて翻案・要約した派生作品です。 元の文書は MicrosoftDocs/azure-ai-docs にホストされています。

生成AIの性能には限界があり、誤訳や誤解釈が含まれる可能性があります。 本ポストはあくまで参考情報として用い、正確な情報は必ず元の文書を参照してください。

このポストで使用されている商標はそれぞれの所有者に帰属します。これらの商標は技術的な説明のために使用されており、商標権者からの公式な承認や推奨を示すものではありません。

View Diff on GitHub

Highlights

今回の更新では、主にAzure AI Searchおよび関連サービスのドキュメントの改訂が行われました。複数の記事の適用日が最新のものに改められるとともに、サービス提供内容、地域要件、請求情報などが更新されました。特に、Azure AI Speechサービスについての情報が削除され、新たに多数のリンクやガイドへのアクセスが追加されており、ドキュメントが最新の内容を反映し、ユーザーにとって実用的で使いやすく改良されています。

New features

  • 記事全体の適用日が最新の日付に更新され、内容の鮮度が確保されました。
  • リソースに関する地域要件が整理され、必要なサービスがどの地域で展開されるべきかが明示されるようになりました。
  • Azure AI Visionなどの新たなサービスやAPIの言及が追加され、より包括的な内容となっています。

Breaking changes

  • 一部サービス(例: Azure AI Speech)に関する情報が削除され、リファレンスとリンクが改訂されました。
  • 複数の記事で、地域要件やサービス名の表現が変更されています。このため、旧内容に依存した設定や理解が必要であったユーザーには若干の適応が求められる場合があります。

Other updates

  • 文書の表現が明確化され、ユーザーが情報をより直感的に理解できるように工夫されています。
  • コスト管理に関する詳細情報が追加され、ユーザーがよりスマートに料金を管理する方法が示されています。

Insights

このドキュメントの大幅な見直しは、AzureのAIサービスを使用するユーザーに、より正確で最新の情報を提供するためのものです。特に、必要なサービスがどのような地域条件の下で利用可能か、また請求がどのように行われるのかといった具体的な情報が明示化されました。これにより、ユーザーが自身のニーズに最適な設定を行うために必要な情報が整備され、誤解を回避し、効率的な活用を支援することが意図されています。

また、Azure AI Visionなどのサービスが新たに加わり、クラウドにおけるAI機能の利用範囲がさらに広がりました。これにより、新しい技術を活かしてより豊かなAI体験を実現しやすくなっています。今回の変更は、Azureにおける迅速な技術進化を受け、ドキュメント内容がその流れに追いつくべく行われたもので、ユーザーはこれにより一層安定したサービス利用が享受できるでしょう。

Summary Table

Filename Type Title Status A D M
cognitive-search-attach-cognitive-services.md minor update 投稿日変更と内容の更新: Cognitive Servicesのドキュメント(Locale: ja_JP) modified 1 2 3
cognitive-search-concept-intro.md minor update 請求情報の更新: Cognitive Searchの概念紹介ドキュメント(Locale: ja_JP) modified 1 1 2
search-create-service-portal.md minor update サービス作成ガイドの内容更新: Azure AI Searchに関する文書(Locale: ja_JP) modified 4 15 19
search-get-started-portal-image-search.md minor update 画像検索ポータル入門ガイドの更新(Locale: ja_JP) modified 4 4 8
search-get-started-portal-import-vectors.md minor update ベクトルインポートポータルの入門ガイドの更新(Locale: ja_JP) modified 6 6 12
search-get-started-rag.md minor update RAGを用いた生成的検索のクイックスタートガイドの更新(Locale: ja_JP) modified 1 4 5
search-how-to-integrated-vectorization.md minor update Azure AI Searchにおける統合ベクトル化設定ガイドの更新(Locale: ja_JP) modified 3 3 6
search-how-to-semantic-chunking.md minor update セマンティックチャンク化に関するガイドの更新(Locale: ja_JP) modified 3 3 6
search-manage.md minor update Azure AI Searchの管理に関するガイドの更新(Locale: ja_JP) modified 1 1 2
search-sku-manage-costs.md minor update Azure AI Searchのコスト管理ガイドの改訂(Locale: ja_JP) modified 85 50 135
search-try-for-free.md minor update Azure AI Searchの無料トライアルガイドの更新(Locale: ja_JP) modified 12 21 33
tutorial-document-extraction-multimodal-embeddings.md minor update マルチモーダル埋め込みを使用したドキュメント抽出チュートリアルの更新(Locale: ja_JP) modified 2 2 4
tutorial-document-layout-multimodal-embeddings.md minor update マルチモーダル埋め込みを用いたドキュメントレイアウトチュートリアルの更新(Locale: ja_JP) modified 2 2 4
tutorial-rag-build-solution-maximize-relevance.md minor update 関連性最大化チュートリアルの改訂(Locale: ja_JP) modified 3 3 6
tutorial-rag-build-solution-models.md minor update RAGによるソリューションモデルチュートリアルの更新(Locale: ja_JP) modified 3 13 16
tutorial-rag-build-solution-pipeline.md minor update RAG用インデキシングパイプライン構築チュートリアルの更新(Locale: ja_JP) modified 3 3 6
vector-search-how-to-create-index.md minor update ベクトルインデックス作成手順の更新(Locale: ja_JP) modified 2 2 4
vector-search-how-to-generate-embeddings.md minor update 埋め込み生成に関する手順の更新(Locale: ja_JP) modified 2 2 4
vector-search-integrated-vectorization.md minor update 統合ベクトル化に関する文書の更新(Locale: ja_JP) modified 2 2 4

Modified Contents

articles/search/cognitive-search-attach-cognitive-services.md

Diff
@@ -9,7 +9,7 @@ ms.custom:
   - ignite-2023
   - ignite-2024
 ms.topic: how-to
-ms.date: 04/02/2025
+ms.date: 06/11/2025
 ---
 
 # Attach an Azure AI services resource to a skillset in Azure AI Search
@@ -22,7 +22,6 @@ An Azure AI services multi-service resource provides a collection of Azure AI se
 
 + [Azure AI Vision](/azure/ai-services/computer-vision/overview) for image analysis, optical character recognition (OCR), and multimodal embeddings
 + [Azure AI Language](/azure/ai-services/language-service/overview) for language detection, entity recognition, sentiment analysis, and key phrase extraction
-+ [Azure AI Speech](/azure/ai-services/speech-service/overview) for speech to text and text to speech
 + [Azure AI Translator](/azure/ai-services/translator/translator-overview) for machine text translation
 
 Exceptions to billing through the multi-service resource include [AzureOpenAIEmbedding](cognitive-search-skill-azure-openai-embedding.md) or the [AML skill](cognitive-search-aml-skill.md) billing. Azure AI Search doesn't internally host models from Azure OpenAI or the Azure AI Foundry model catalog. Usage for AML and Azure OpenAI skills and vectorizers are through [Azure OpenAI Standard pricing](https://azure.microsoft.com/pricing/details/cognitive-services/openai-service/#pricing) and [Azure Machine Learning Standard pricing](https://azure.microsoft.com/pricing/details/machine-learning/), respectively. A few other skills, such as Text Split and Text Merge, aren't billable.

Summary

{
    "modification_type": "minor update",
    "modification_title": "投稿日変更と内容の更新: Cognitive Servicesのドキュメント(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Servicesに関連するドキュメントが更新されました。具体的には、記事の適用日(ms.date)が2025年4月2日から2025年6月11日に変更され、リスト内の提供されているサービスに関する情報が調整されています。特に、「Azure AI Speech」サービスの項目が削除され、他のサービスのリンクが追加されました。これにより、ドキュメントが最新の情報を反映し、ユーザーに対して正確なリソースを提供することを目的としています。

articles/search/cognitive-search-concept-intro.md

Diff
@@ -108,7 +108,7 @@ In Azure Storage, a [knowledge store](knowledge-store-concept-intro.md) can assu
 
 Enrichment is available in regions that have Azure AI services. You can check the availability of enrichment on the [regions list](search-region-support.md) page. 
 
-Billing follows a Standard pricing model. The costs of using built-in skills are passed on when a multi-region Azure AI services key is specified in the skillset. There are also costs associated with image extraction, as metered by Azure AI Search. Text extraction and utility skills, however, aren't billable. For more information, see [How you're charged for Azure AI Search](search-sku-manage-costs.md#how-youre-charged-for-azure-ai-search).
+Billing follows a Standard pricing model. The costs of using built-in skills are passed on when a multi-region Azure AI services key is specified in the skillset. There are also costs associated with image extraction, as metered by Azure AI Search. Text extraction and utility skills, however, aren't billable. For more information, see [How you're charged for Azure AI Search](search-sku-manage-costs.md#how-youre-charged-for-the-base-service).
 
 ## Checklist: A typical workflow
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "請求情報の更新: Cognitive Searchの概念紹介ドキュメント(Locale: ja_JP)"
}

Explanation

この変更では、Azure Cognitive Searchに関する概念紹介のドキュメントが更新されました。請求に関する情報が修正され、リンク先が「Azure AI Searchの料金について」との記述から「基本サービスの料金について」に変更されています。この修正により、請求方法に関する詳細が最新の情報を反映し、ユーザーに対して明確な説明が提供されるようになりました。

articles/search/search-create-service-portal.md

Diff
@@ -11,7 +11,7 @@ ms.custom:
   - references_regions
   - build-2024
 ms.topic: how-to
-ms.date: 04/28/2025
+ms.date: 06/11/2025
 ---
 
 # Create an Azure AI Search service in the Azure portal
@@ -116,22 +116,11 @@ In most cases, choose a region near you, unless any of the following apply:
 
 1. Do you have business continuity and disaster recovery (BCDR) requirements? Create two or more search services in [regional pairs](/azure/reliability/cross-region-replication-azure#azure-paired-regions) within [availability zones](search-reliability.md#availability-zones). For example, if you're operating in North America, you might choose East US and West US, or North Central US and South Central US, for each search service.
 
-1. Do you need [AI enrichment](cognitive-search-concept-intro.md), [integrated data chunking and vectorization](vector-search-integrated-vectorization.md), or [multimodal image search](search-get-started-portal-image-search.md)? Azure AI Search, Azure OpenAI, and Azure AI services multi-service must coexist in the same region.
+1. Do you need [AI enrichment](cognitive-search-concept-intro.md), [integrated data chunking and vectorization](vector-search-integrated-vectorization.md), or [multimodal search](multimodal-search-overview.md)? For [billing purposes](cognitive-search-attach-cognitive-services.md), Azure AI Search and Azure AI services multi-service must coexist in the same region.
 
-   + Start with [Azure OpenAI regions](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability) because they have the most variability. Azure OpenAI provides embedding models and chat models for RAG and integrated vectorization.
+   + Check [Azure AI Search regions](search-region-support.md#azure-public-regions). If you're using OCR, entity recognition, or other skills backed by Azure AI, the **AI enrichment** column indicates whether Azure AI Search and Azure AI services multi-service are in the same region.
 
-   + Check [Azure AI Search regions](search-region-support.md#azure-public-regions) for a match to your Azure OpenAI region. If you're using OCR, entity recognition, or other skills backed by Azure AI, the **AI enrichment** column indicates whether Azure AI services multi-service and Azure AI Search are in the same region.
-
-   + Check [multimodal embedding regions](/azure/ai-services/computer-vision/overview-image-analysis#region-availability) for multimodal APIs and image search. This API is accessed through an Azure AI services multi-service account, but in general, it's available in fewer regions than Azure AI services multi-service.
-
-### Regions with the most overlap
-
-Currently, the following regions offer cross-regional availability for Azure AI Search, Azure OpenAI, and Azure AI Vision multimodal:
-
-+ Americas: West US, East US
-+ Europe: Switzerland North, Sweden Central
-
-This list isn't definitive, and depending on your tier, you might have more choices. Region status can also change quickly, so confirm your region choice before you create your search service.
+   + Check [Azure AI Vision regions](/azure/ai-services/computer-vision/overview-image-analysis#region-availability) for multimodal APIs that enable text and image vectorization. These APIs are powered by Azure AI Vision and accessed through an Azure AI services multi-service resource. However, they're generally available in fewer regions than the multi-service resource itself.
 
 ## Choose a tier
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "サービス作成ガイドの内容更新: Azure AI Searchに関する文書(Locale: ja_JP)"
}

Explanation

この変更では、AzureポータルでのAzure AI Searchサービスの作成に関するガイドが更新されました。主な変更点として、適用日(ms.date)が2025年4月28日から2025年6月11日に変更され、いくつかの文書が修正されました。また、AIエンリッチメントやマルチモーダル検索に関する説明が精細化され、特に請求に関する注意点が強調されました。さらに、地域に関する情報の構成が改善され、Azure AI Vision APIについての言及も追加されています。これにより、ユーザーがサービスを選択する際に必要な最新情報が提供されることを目的としています。

articles/search/search-get-started-portal-image-search.md

Diff
@@ -6,7 +6,7 @@ author: haileytap
 ms.author: haileytapia
 ms.service: azure-ai-search
 ms.topic: quickstart
-ms.date: 06/04/2025
+ms.date: 06/11/2025
 ms.custom:
   - references_regions
 ---
@@ -42,7 +42,7 @@ For content extraction, you can choose either default extraction via Azure AI Se
 | Default extraction | Extracts location metadata from PDF images only. Doesn't require another Azure AI resource. |
 | Enhanced extraction | Extracts location metadata from text and images for multiple document types. Requires an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>1</sup> in a [supported region](cognitive-search-skill-document-intelligence-layout.md#supported-regions). |
 
-<sup>1</sup> For billing purposes, you must [attach your multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
+<sup>1</sup> For billing purposes, you must [attach your Azure AI multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
 
 ### Supported embedding methods
 
@@ -57,7 +57,7 @@ For content embedding, you can choose either image verbalization (followed by te
 
 <sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. You must create an Azure OpenAI resource in the Azure portal.
 
-<sup>3</sup> For billing purposes, you must [attach your multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
+<sup>3</sup> For billing purposes, you must [attach your Azure AI multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
 
 <sup>4</sup> `phi-4` is only available to Azure AI Foundry projects.
 
@@ -300,7 +300,7 @@ To use the skills for multimodal embeddings:
 
 1. For the kind, select your model provider: **AI Foundry Hub catalog models** or **AI Vision vectorization**.
 
-   <!-- If it's unavailable, make sure your Azure AI Search service and Azure AI multi-service account are both in a region that [supports the AI Vision multimodal APIs](/azure/ai-services/computer-vision/how-to/image-retrieval). -->
+   If Azure AI Vision is unavailable, make sure your search service and multi-service resource are both in a [region that supports the Azure AI Vision multimodal APIs](/azure/ai-services/computer-vision/how-to/image-retrieval).
 
 1. Specify your Azure subscription, resource, and embedding model deployment.
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "画像検索ポータル入門ガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Searchにおける画像検索ポータルに関する入門ガイドが更新されました。主な改訂点として、適用日(ms.date)が2025年6月4日から2025年6月11日に変更されています。さらに、マルチサービスリソースの呼称が「あなたのマルチサービスリソース」から「Azure AIマルチサービスリソース」に修正され、より明確な表現となっています。また、請求に関する注意事項が含まれる部分の言い回しも若干修正され、リソースの地域要件についての説明が明瞭化されています。これにより、ユーザーが必要とする情報への理解が深まることを目的としています。

articles/search/search-get-started-portal-import-vectors.md

Diff
@@ -9,7 +9,7 @@ ms.custom:
   - build-2024
   - ignite-2024
 ms.topic: quickstart
-ms.date: 06/04/2025
+ms.date: 06/11/2025
 ---
 
 # Quickstart: Vectorize text in the Azure portal
@@ -42,7 +42,7 @@ The **Import and vectorize data wizard** [supports a wide range of Azure data so
 
 ### Supported embedding models
 
-For integrated vectorization, you must use one of the following embedding models on an Azure AI platform in the [same region as Azure AI Search](search-create-service-portal.md#regions-with-the-most-overlap). Deployment instructions are provided in a [later section](#prepare-embedding-model).
+For integrated vectorization, you must use one of the following embedding models on an Azure AI platform. Deployment instructions are provided in a [later section](#prepare-embedding-model).
 
 | Provider | Supported models |
 |--|--|
@@ -54,7 +54,7 @@ For integrated vectorization, you must use one of the following embedding models
 
 <sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. Only Azure OpenAI resources created in the Azure portal are compatible with the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md).
 
-<sup>3</sup> For billing purposes, you must [attach your multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
+<sup>3</sup> For billing purposes, you must [attach your Azure AI multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
 
 <sup>4</sup> The Azure AI Vision multimodal embedding model is available in [select regions](/azure/ai-services/computer-vision/overview-image-analysis#region-availability).
 
@@ -375,7 +375,7 @@ In this step, you specify an embedding model to vectorize chunked data. Chunking
 
    + Azure AI Foundry model catalog
 
-   + An Azure AI Vision multimodal resource in the same region as Azure AI Search. If there's no [Azure AI services multi-service account](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) in the same region, this option isn't available.
+   + Azure AI Vision (via an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) in the same region as Azure AI Search)
 
 1. Specify the Azure subscription.
 
@@ -385,11 +385,11 @@ In this step, you specify an embedding model to vectorize chunked data. Chunking
 
    + For AI Foundry model catalog, select the model you deployed in [Prepare embedding model](#prepare-embedding-model).
 
-   + For AI Vision multimodal embeddings, select your multi-service account.
+   + For AI Vision multimodal embeddings, select your multi-service resource.
 
 1. For the authentication type, select **System assigned identity**.
 
-   + The identity should have a **Cognitive Services User** role on the Azure AI services multi-services account.
+   + The identity should have a **Cognitive Services User** role on the Azure AI services multi-service resource.
 
 1. Select the checkbox that acknowledges the billing effects of using these resources.
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "ベクトルインポートポータルの入門ガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、Azureポータルでのテキストのベクトル化に関する入門ガイドが更新されました。主な修正内容としては、適用日(ms.date)が2025年6月4日から2025年6月11日に変更されています。また、統合ベクトル化に関する説明文が改善され、一部の表現が明確化されています。具体的には、「Azure AI Searchと同じ地域にある」といった地域に関する要件の表現が省略され、より理解しやすくなりました。さらに、「マルチサービスアカウント」の使用に関する説明も「マルチサービスリソース」に改訂され、リソース管理が明確になっています。これにより、ユーザーが情報をより簡単に理解し、適切な設定を行うための手助けとなることを意図しています。

articles/search/search-get-started-rag.md

Diff
@@ -8,7 +8,7 @@ ms.service: azure-ai-search
 ms.custom:
   - ignite-2024
 ms.topic: quickstart
-ms.date: 03/04/2025
+ms.date: 06/11/2025
 ---
 
 # Quickstart: Generative search (RAG) using grounding data from Azure AI Search
@@ -24,14 +24,11 @@ In this quickstart, you send queries to a chat completion model for a conversati
   - [Deploy the chat completion model](/azure/ai-foundry/how-to/deploy-models-openai) in Azure AI Foundry or [use another approach](/azure/ai-services/openai/how-to/working-with-models).
 
 - An [Azure AI Search resource](search-create-service-portal.md).
-  - Use the same region as your Azure OpenAI resource.
   - We recommend using the Basic tier or higher.
   - [Enable semantic ranking](semantic-how-to-enable-disable.md).
 
 - [Visual Studio Code](https://code.visualstudio.com/download) with the [Python extension](https://marketplace.visualstudio.com/items?itemName=ms-python.python) and the [Jupyter package](https://pypi.org/project/jupyter/). For more information, see [Python in Visual Studio Code](https://code.visualstudio.com/docs/languages/python).
 
-To meet the same-region requirement, start by reviewing the [regions for the chat model](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability) you want to use. After you identify a region, confirm that Azure AI Search is available in the [same region](search-region-support.md#azure-public-regions).
-
 ## Download file
 
 [Download a Jupyter notebook](https://github.com/Azure-Samples/azure-search-python-samples/tree/main/Quickstart-RAG) from GitHub to send the requests in this quickstart. For more information, see [Downloading files from GitHub](https://docs.github.com/get-started/start-your-journey/downloading-files-from-github).

Summary

{
    "modification_type": "minor update",
    "modification_title": "RAGを用いた生成的検索のクイックスタートガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Searchを使用した生成的検索(RAG)のクイックスタートガイドが更新されました。主な修正点は、適用日(ms.date)が2025年3月4日から2025年6月11日に変更されたことです。また、リソースに関する説明から「同じ地域で利用する必要がある」という文が削除され、内容が簡略化されています。さらに、必要なツールとしてVisual Studio Codeに関する情報が明確化され、Python拡張機能とJupyterパッケージのリンクが追加されています。これにより、ユーザーが生成的検索の実装において必要な情報をより簡単に理解できるようになっています。全体として、ガイドはよりシンプルで使いやすくなっています。

articles/search/search-how-to-integrated-vectorization.md

Diff
@@ -7,7 +7,7 @@ author: haileytap
 ms.author: haileytapia
 ms.service: azure-ai-search
 ms.topic: how-to
-ms.date: 04/29/2025
+ms.date: 06/11/2025
 ---
 
 # Set up integrated vectorization in Azure AI Search using REST
@@ -42,7 +42,7 @@ Integrated vectorization works with [all supported data sources](search-indexer-
 
 ### Supported embedding models
 
-For integrated vectorization, you must use one of the following embedding models on an Azure AI platform in the [same region as Azure AI Search](search-create-service-portal.md#regions-with-the-most-overlap). Deployment instructions are provided in a [later section](#prepare-your-embedding-model).
+For integrated vectorization, you must use one of the following embedding models on an Azure AI platform. Deployment instructions are provided in a [later section](#prepare-your-embedding-model).
 
 | Provider | Supported models |
 |--|--|
@@ -52,7 +52,7 @@ For integrated vectorization, you must use one of the following embedding models
 
 <sup>1</sup> The endpoint of your Azure OpenAI resource must have a [custom subdomain](/azure/ai-services/cognitive-services-custom-subdomains), such as `https://my-unique-name.openai.azure.com`. If you created your resource in the [Azure portal](https://portal.azure.com/), this subdomain was automatically generated during resource setup.
 
-<sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. Only Azure OpenAI resources created in the Azure portal are compatible with the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) integration.
+<sup>2</sup> Azure OpenAI resources (with access to embedding models) that were created in the [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) aren't supported. Only Azure OpenAI resources created in the Azure portal are compatible with the [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md).
 
 <sup>3</sup> For billing purposes, you must [attach your Azure AI multi-service resource](cognitive-search-attach-cognitive-services.md) to the skillset in your Azure AI Search service. Unless you use a [keyless connection (preview)](cognitive-search-attach-cognitive-services.md#bill-through-a-keyless-connection) to create the skillset, both resources must be in the same region.
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "Azure AI Searchにおける統合ベクトル化設定ガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Searchにおける統合ベクトル化の設定ガイドが更新されました。主な修正点は、適用日(ms.date)が2025年4月29日から2025年6月11日に変更されたことです。また、統合ベクトル化に関するいくつかの文が明確化され、「同じ地域での使用」という要件の記載が省略され、表現が簡潔になりました。これにより、ユーザーは必要な情報をより直感的に理解しやすくなっています。全体として、このガイドは内容の整理と明確化により、ユーザーの利便性を高めることを意図しています。

articles/search/search-how-to-semantic-chunking.md

Diff
@@ -6,7 +6,7 @@ author: haileytap
 ms.author: haileytapia
 ms.service: azure-ai-search
 ms.topic: how-to
-ms.date: 05/08/2025
+ms.date: 06/11/2025
 ms.custom:
   - references_regions
   - ignite-2024
@@ -42,9 +42,9 @@ For illustration purposes, this article uses the [sample health plan PDFs](https
 
 + A skillset with these two skills:
 
-  + [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md) that splits documents based on paragraph boundaries. This skill has region requirements. An Azure AI multi-service resource must be in the same region as Azure AI Search with AI Enrichment.
+  + [Document Layout skill](cognitive-search-skill-document-intelligence-layout.md) that splits documents based on paragraph boundaries. This skill has region requirements. An Azure AI multi-service resource must be in the same region as Azure AI Search with AI enrichment.
 
-  + [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) that generates vector embeddings. This skill also has region requirements. The model must be in the same region as Azure AI Search.
+  + [Azure OpenAI Embedding skill](cognitive-search-skill-azure-openai-embedding.md) that generates vector embeddings. This skill *doesn't* have region requirements.
 
 ## Prepare data files
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "セマンティックチャンク化に関するガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、セマンティックチャンク化に関するガイドが更新されました。主な修正点は、適用日(ms.date)が2025年5月8日から2025年6月11日に変更されたことです。また、スキルセットに関する記述で、Azure AI Searchにおける「ドキュメントレイアウトスキル」に関する地域要件が明確に言及されています。さらに、「Azure OpenAI 埋め込みスキル」については、地域要件の記載が変更され、このスキルが地域の制約を持たないことが明示されています。これにより、ユーザーが必要なスキルの地域要件を理解しやすくなり、より正確に構成を行えるようになっています。全体として、ガイドは情報の整理と明確化が図られ、利便性が向上しています。

articles/search/search-manage.md

Diff
@@ -76,7 +76,7 @@ By default, a search service is created with one replica and one partition. You
 
 Semantic ranker increases the cost of running your service. If you don't want to use this feature, you can [disable semantic ranker](semantic-how-to-enable-disable.md) at the service level.
 
-To learn about other features that affect billing, see [How you're charged for Azure AI Search](search-sku-manage-costs.md#how-youre-charged-for-azure-ai-search).
+To learn about other features that affect billing, see [How you're charged for Azure AI Search](search-sku-manage-costs.md#how-youre-charged-for-the-base-service).
 
 ## Enable diagnostic logging
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "Azure AI Searchの管理に関するガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Searchの管理に関するガイドが更新されました。主な修正点は、料金に関するリンクの表現が変更されたことです。具体的には、「Azure AI Searchの料金に関する情報」のリンクテキストが、「基本サービスに対する課金方法」に変更されました。これにより、ユーザーに対してより明確な情報を提供し、正確な理解を促進することを目的としています。全体として、この更新は情報の正確性を向上させることに寄与しています。

articles/search/search-sku-manage-costs.md

Diff
@@ -1,112 +1,147 @@
 ---
-title: Plan and manage costs
+title: Plan and Manage Costs
 titleSuffix: Azure AI Search
-description: 'Learn about billable events, the billing model, and tips for cost control when running an Azure AI Search service.'
-
+description: Learn about billable events, the billing model, and tips for cost control when running an Azure AI Search service.
 manager: nitinme
 author: haileytap
 ms.author: haileytapia
 ms.service: azure-ai-search
 ms.custom:
   - ignite-2023
-ms.topic: conceptual
-ms.date: 03/21/2025
+ms.topic: how-to
+ms.date: 06/10/2025
 ---
 
 # Plan and manage costs of an Azure AI Search service
 
-This article explains the billing model and billable events of Azure AI Search, and provides guidance for managing the costs.
+This article explains how Azure AI Search is billed, including fixed and variable costs, and provides guidance for cost management.
 
-As a first step, estimate your baseline costs by using the Azure pricing calculator. Alternatively, estimated costs and tier comparisons can also be found in the [Select a pricing tier](search-create-service-portal.md#choose-a-tier) page when creating a service.
+Before you create a search service, use the [Azure pricing calculator](https://azure.microsoft.com/pricing/calculator/) to estimate costs based on your planned [capacity](search-capacity-planning.md) and features. Another resource is a capacity-planning worksheet that models your expected index size, indexing throughput, and indexing costs.
 
-Azure provides built-in cost management that cuts across service boundaries to provide inclusive cost monitoring and the ability to set budgets and define alerts. The costs of running a search service will vary depending on capacity and which features you use. After you create your search service, optimize capacity so that you pay only for what you need. 
+As your search workload evolves, follow our tips to minimize costs during both deployment and operation. You can also use built-in metrics to monitor query requests and [Cost Management](/azure/cost-management-billing/costs/overview-cost-management) to create budgets, alerts, and data exports.
 
 > [!NOTE]
-> Higher capacity partitions are available at the same billing rate on newer services created after April and May 2024. For more information about partition size upgrades, see [Service limits](search-limits-quotas-capacity.md#service-limits).
+> Higher-capacity partitions are available at the same billing rate on services created after April and May 2024. For more information about partition-size upgrades, see [Service limits](search-limits-quotas-capacity.md#service-limits).
 
 <a name="billable-events"></a>
 
 ## Understand the billing model
 
-Azure AI Search runs on Azure infrastructure that accrues costs when you deploy new resources. It's important to understand that there could be other additional infrastructure costs that might accrue.
+Azure AI Search has both fixed and pay-as-you-go billing. You pay a fixed rate for your search service as long as it exists, while premium features are billed according to your usage.
 
-### How you're charged for Azure AI Search
+Costs for Azure AI Search are only a portion of the monthly costs in your Azure bill. Although this article focuses on planning and managing Azure AI Search costs, you're billed for all Azure services and resources used in your Azure subscription, including non-Microsoft services.
 
-When you create or use Search resources, you're charged for the following meters:
+### How you're charged for the base service
 
-+ You're charged an hourly rate based on the [pricing tier](search-sku-tier.md) of your search service, prorated to the hour.
+When you create or use search resources, you're charged for the minimum required replica and partition combination (R × P) at the prorated hourly rate of your [pricing tier](search-sku-tier.md). As your search units increase or decrease, so do your costs. For more information and an example of the billing model, see [Billing rates](search-sku-tier.md#billing-rates).
 
-+ The charge is applied per the number of search units (SU) allocated to the service. Search units are [units of capacity](search-capacity-planning.md). Total SU is the product of replicas and partitions (R x P = SU) used by your service.
+### How you're charged for premium features
 
-Billing is based on capacity (SUs) and the costs of running premium features, such as [AI enrichment](cognitive-search-concept-intro.md), [semantic ranker](semantic-search-overview.md), and [private endpoints](service-create-private-endpoint.md). Meters associated with premium features are listed in the following table.
+Premium features are charged in addition to the base cost of your search service. The following table lists premium features and their billing units. All of these features are optional, so if you don't use them, you don't incur any charges.
 
-| Meter | Unit |
+| Feature | Billing unit |
 |-------|------|
-| Image extraction (AI enrichment) <sup>1, 2</sup> | Per 1000 images. See the [pricing page](https://azure.microsoft.com/pricing/details/search/#pricing). |
-| Custom Entity Lookup skill (AI enrichment) <sup>1</sup> | Per 1000 text records. See the [pricing page](https://azure.microsoft.com/pricing/details/search/#pricing) |
-| [Built-in skills](cognitive-search-predefined-skills.md)  (AI enrichment) <sup>1</sup> | Number of transactions, billed at the same rate as if you had performed the task by calling Azure AI services directly. You can process 20 documents per indexer per day for free. Larger or more frequent workloads require a multi-resource Azure AI services key. |
-| [Semantic ranker](semantic-search-overview.md) <sup>1</sup> | Number of queries of "queryType=semantic", billed at a progressive rate. See the [pricing page](https://azure.microsoft.com/pricing/details/search/#pricing). |
-| [Shared private link](search-indexer-howto-access-private.md) <sup>1</sup> | [Billed for bandwidth](https://azure.microsoft.com/pricing/details/private-link/) as long as the shared private link exists and is used. |
+| Image extraction (AI enrichment) <sup>1</sup> | Per 1,000 images. See the [pricing page](https://azure.microsoft.com/pricing/details/search/#pricing). |
+| [Custom Entity Lookup skill](cognitive-search-skill-custom-entity-lookup.md) (AI enrichment) | Per 1,000 text records. See the [pricing page](https://azure.microsoft.com/pricing/details/search/#pricing) |
+| [Built-in or custom skills](cognitive-search-predefined-skills.md) (AI enrichment) <sup>2</sup> | Number of transactions. Billed at the rate of the model provider: Azure AI services, Azure OpenAI, or Azure AI Foundry. |
+| [Vectorizers](vector-search-how-to-configure-vectorizer.md) <sup>2</sup> | Number of vectorization operations. Billed at the rate of the model provider: Azure AI Vision, Azure OpenAI, or Azure AI Foundry. |
+| [Semantic ranker](semantic-search-overview.md) | Number of queries of `queryType=semantic`. Billed at a progressive rate. See the [pricing page](https://azure.microsoft.com/pricing/details/search/#pricing). |
+| [Shared private link](search-indexer-howto-access-private.md) | [Billed for bandwidth](https://azure.microsoft.com/pricing/details/private-link/) as long as the shared private link exists and is used. |
 
-<sup>1</sup> Applies only if you use or enable the feature.
+<sup>1</sup> Refers to images extracted from a file within the indexer pipeline. Text extraction is free. Image extraction is billed when you [enable the `indexAction` parameter](cognitive-search-concept-image-scenarios.md#configure-indexers-for-image-processing) or when you call the [Document Extraction skill](cognitive-search-skill-document-extraction.md).
 
-<sup>2</sup> Refers to images extracted from a file within the indexer pipeline. Text extraction is free. Image extraction is billed during the initial document cracking step and when invoking the Document Extraction skill. In an [indexer configuration](/rest/api/searchservice/indexers/create#indexer-parameters), `imageAction` is the parameter that triggers image extraction. If `imageAction` is set to "none" (the default), there's no charge. If set to "generateNormalizedImages" or "generateNormalizedImagePerPage" and the document contains images, you're charged for each image. This is true even if there are no skills to consume the image content.
+<sup>2</sup> Charges for Azure OpenAI models and Azure AI Foundry models appear on your bill for those services.
 
-You aren't billed on the number of full text or vector queries, query responses, or documents ingested, although [service limits](search-limits-quotas-capacity.md) do apply at each tier.
+### How you're otherwise charged
 
-Data traffic might also incur networking costs. See the [Bandwidth pricing](https://azure.microsoft.com/pricing/details/bandwidth/).
+Depending on your configuration and usage, the following charges might apply:
 
-Several premium features such as [knowledge store](knowledge-store-concept-intro.md), [debug sessions](cognitive-search-debug-session.md), and [enrichment cache](cognitive-search-incremental-indexing-conceptual.md) have a dependency on Azure Storage. The meters for Azure Storage apply in this case, and the associated storage costs of using these features are included in the Azure Storage bill.
++ Data traffic might incur networking costs. See the [bandwidth pricing](https://azure.microsoft.com/pricing/details/bandwidth/).
 
-[Customer-managed keys](search-security-manage-encryption-keys.md) provide double encryption of sensitive content. This feature requires a billable [Azure Key Vault](https://azure.microsoft.com/pricing/details/key-vault/)).
++ Several premium features, such as [knowledge stores](knowledge-store-concept-intro.md), [debug sessions](cognitive-search-debug-session.md), and [enrichment caches](cognitive-search-incremental-indexing-conceptual.md), depend on Azure Storage and incur storage costs. Charges for these features appear on your Azure Storage bill.
 
-Skillsets can include [billable built-in skills](cognitive-search-predefined-skills.md), non-billable built-in utility skills, and custom skills. Non-billable utility skills include Conditional, Shaper, Text Merge, Text Split. You aren't charged for using them. There's no API key requirement, and no 20 document limit. 
++ [Customer-managed keys](search-security-manage-encryption-keys.md), which provide double encryption of sensitive content, require a billable [Azure Key Vault](https://azure.microsoft.com/pricing/details/key-vault/).
 
-A custom skill is functionality you provide. The cost of using a custom skill depends entirely on whether custom code is calling other billable services.  There's no API key requirement and no 20 document limit on custom skills.
++ A skillset can include [billable built-in skills](cognitive-search-predefined-skills.md), nonbillable built-in utility skills, and custom skills. Nonbillable utility skills include [Conditional](cognitive-search-skill-conditional.md), [Shaper](cognitive-search-skill-shaper.md), [Text Merge](cognitive-search-skill-textmerger.md), and [Text Split](cognitive-search-skill-textsplit.md). They don't have an API key requirement or 20-document limit.
 
-## Monitor costs
++ A custom skill is functionality you provide. Custom skills are billable only if they call other billable services. They don't have an API key requirement or 20-document limit.
+
+> [!NOTE]
+> You aren't billed for the number of full-text or vector queries, query responses, or documents ingested. However, [service limits](search-limits-quotas-capacity.md) apply to each pricing tier.
+
+## Estimate and plan costs
+
+Use the [Azure pricing calculator](https://azure.microsoft.com/pricing/calculator/) to estimate your baseline costs for Azure AI Search. You can also  find estimated costs and tier comparisons on the [Select Pricing Tier](search-create-service-portal.md#choose-a-tier) page during service creation.
 
-Cost management is built into the Azure infrastructure. Review [Billing and cost management](/azure/cost-management-billing/cost-management-billing-overview) for more information about tracking costs, tools, and APIs.
+For initial testing, we recommend that you create a capacity-planning worksheet. The worksheet helps you understand the index-to-source ratio and the effect of enrichment or vector features on both capacity and cost.
+
+To create a capacity-planning worksheet:
+
+1. Index a small sample (1–5%) of your data. Include any [OCR](cognitive-search-skill-ocr.md), enrichment, or embedding skills you plan to use.
+
+1. Measure the index size, indexing throughput, and indexing costs.
+
+1. Extrapolate the results to estimate the full-scale requirements for your data.
 
 ## Minimize costs
 
-Follow these guidelines to minimize costs of an Azure AI Search solution.
+To minimize the costs of your Azure AI Search solution, use the following strategies:
+
+### Deployment and configuration
 
-1. If possible, create a search service [in a region that has more storage per partition](search-limits-quotas-capacity.md#service-limits). If you're using multiple Azure resources in your solution, create them in the same region, or in as few regions as possible, to minimize or eliminate bandwidth charges.
++ Create a search service in a [region with more storage per partition](search-limits-quotas-capacity.md#service-limits).
 
-1. [Scale up](search-capacity-planning.md) for resource-intensive operations like indexing, and then readjust downwards for regular query workloads. If there are predictable patterns to your workloads, you might be able to synchronize scale up to coincide with the expected volume (you would need to write code to automate this).
++ Create all related Azure resources in the same region (or as few regions as possible) to minimize or eliminate bandwidth charges.
 
-   When estimating the cost of a search solution, keep in mind that pricing and capacity aren't linear (doubling capacity more than doubles the cost on the same tier). Also, at some point, switching up to a higher tier can give you better and faster performance at roughly the same price point. For more information and an example, see [Switch to a Standard S2 tier](search-performance-tips.md#tip-switch-to-a-standard-s2-tier).
++ Choose the lightest [pricing tier](search-sku-tier.md) that meets your needs. Basic and S1 offer full access to the modern API at the lowest hourly rate per SU.
 
-1. Consider [Azure Web App](/azure/app-service/overview) for your front-end application so that requests and responses stay within the data center boundary.
++ Use [Azure Web Apps](/azure/app-service/overview) for your front-end application to keep requests and responses within the data center boundary.
 
-1. If you're using [AI enrichment](cognitive-search-concept-intro.md), there's an extra charge for blob storage, but the cumulative cost goes down if you enable [enrichment caching](cognitive-search-incremental-indexing-conceptual.md).
+### Scaling
+
++ [Add partitions](search-capacity-planning.md#add-or-remove-partitions-and-replicas) only when the index size or ingestion throughput requires it.
+
++ [Add replicas](search-capacity-planning.md#add-or-remove-partitions-and-replicas) only when your queries per second increase, when complex queries are throttling your service, or when high availability is required.
+
++ Scale up for resource-intensive operations, such as indexing, and then readjust downwards for regular query workloads.
+
++ Write code to automate scaling for predictable workload patterns.
+
++ Remember that capacity and pricing aren't linear. Doubling capacity more than doubles costs on the same tier. For better performance at a similar price, consider [switching to a higher tier](search-performance-tips.md#tip-switch-to-a-standard-s2-tier).
+
+### Indexing and enrichment
+
++ Use [incremental indexing](search-howto-reindex.md) to process only new or changed data.
+
++ Use [enrichment caching](cognitive-search-incremental-indexing-conceptual.md) and a [knowledge store](knowledge-store-concept-intro.md) to reuse previously enriched content. Although caching incurs a storage charge, it lowers the cumulative cost of [AI enrichment](cognitive-search-concept-intro.md).
+
++ Keep vector payloads compact. For vector search, see the [vector  compression best practices](https://techcommunity.microsoft.com/blog/azure-ai-services-blog/azure-ai-search-cut-vector-costs-up-to-92-5-with-new-compression-techniques/4404866).
+
+## Monitor costs
 
-## Create budgets
+At the service level, you can [monitor built-in metrics](search-monitor-queries.md) for your queries per second (QPS), search latency, throttled queries, and index size. You can then [create an Azure Monitor dashboard](/azure/azure-monitor/visualize/tutorial-logs-dashboards) that overlays QPS, latency, and cost data to determine when to add or remove replicas.
 
-You can create [budgets](/azure/cost-management-billing/costs/tutorial-acm-create-budgets?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) to manage costs and create [alerts](/azure/cost-management-billing/costs/cost-mgt-alerts-monitor-usage-spending?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) that automatically notify stakeholders of spending anomalies and overspending risks. Alerts are based on spending compared to budget and cost thresholds. Budgets and alerts are created for Azure subscriptions and resource groups, so they're useful as part of an overall cost monitoring strategy. 
+At the subscription or resource group level, [Cost Management](/azure/cost-management-billing/costs/overview-cost-management) provides tools to track, analyze, and control costs. You can use Cost Management to:
 
-Budgets can be created with filters for specific resources or services in Azure if you want more granularity present in your monitoring. Filters help ensure that you don't accidentally create new resources that cost you extra money. For more information about the filter options available when you create a budget, see [Group and filter options](/azure/cost-management-billing/costs/group-filter?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn).
++ [Create budgets](/azure/cost-management-billing/costs/tutorial-acm-create-budgets?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) that define and track progress against spending limits. For more granular monitoring, customize your budgets using [filters](/azure/cost-management-billing/costs/group-filter?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) for specific Azure resources or services. Filters prevent you from accidentally creating resources that incur extra costs.
 
-## Export cost data
++ [Create alerts](/azure/cost-management-billing/costs/cost-mgt-alerts-monitor-usage-spending?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) that automatically notify stakeholders of spending anomalies or overspending risks. Alerts are based on spending compared to budget and cost thresholds. Both budgets and alerts are created for subscriptions and resource groups, making them useful for monitoring overall costs.
 
-You can also [export your cost data](/azure/cost-management-billing/costs/tutorial-export-acm-data?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) to a storage account. This is helpful when you need or others to do more data analysis for costs. For example, a finance team can analyze the data using Excel or Power BI. You can export your costs on a daily, weekly, or monthly schedule and set a custom date range. Exporting cost data is the recommended way to retrieve cost datasets.
++ [Export cost data](/azure/cost-management-billing/costs/tutorial-export-acm-data?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) to a storage account. This is helpful when you or others need to perform more cost analysis. For example, a finance team can analyze the data using Excel or Power BI. You can export your costs on a daily, weekly, or monthly schedule and set a custom date range. Exporting cost data is the recommended method for retrieving cost datasets.
 
 ## FAQ
 
 **Can I temporarily shut down a search service to save on costs?**
 
-Search runs as a continuous service. Dedicated resources are always operational, allocated for your exclusive use for the lifetime of your service. To stop billing entirely, you must delete the service. Deleting a service is permanent and also deletes its associated data.
+Search runs as a continuous service. Dedicated resources are always operational and allocated for your exclusive use for the lifetime of your service. To stop billing entirely, you must delete the service. Deleting a service is permanent and also deletes its associated data.
 
 **Can I change the billing rate (tier) of an existing search service?**
 
 Existing services can be switched between Basic and Standard (S1, S2, and S3) tiers. Currently, you can only switch from a lower tier to a higher tier, such as going from Basic to S1. For more information, see [Change your pricing tier](search-capacity-planning.md#change-your-pricing-tier).
 
-## Next steps
+## Related content
 
-+ Learn more on how pricing works with Azure AI Search. See [Azure AI Search pricing page](https://azure.microsoft.com/pricing/details/search/).
-+ Learn more about [replicas and partitions](search-sku-tier.md).
-+ Learn [how to optimize your cloud investment with Cost Management](/azure/cost-management-billing/costs/cost-mgt-best-practices?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn).
-+ Learn more about managing costs with [cost analysis](/azure/cost-management-billing/costs/quick-acm-cost-analysis?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn).
-+ Learn about how to [prevent unexpected costs](/azure/cost-management-billing/cost-management-billing-overview?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn).
-+ Take the [Cost Management](/training/paths/control-spending-manage-bills?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn) guided learning course.
++ [Azure AI Search pricing](https://azure.microsoft.com/pricing/details/search/)
++ [Choose a pricing tier for Azure AI Search](search-sku-tier.md)
++ [Optimize your cloud investment with Cost Management](/azure/cost-management-billing/costs/cost-mgt-best-practices?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn)
++ [Quickstart: Start using Cost analysis](/azure/cost-management-billing/costs/quick-acm-cost-analysis?WT.mc_id=costmanagementcontent_docsacmhorizontal_-inproduct-learn)

Summary

{
    "modification_type": "minor update",
    "modification_title": "Azure AI Searchのコスト管理ガイドの改訂(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Searchのコスト管理に関するガイドが大幅に改訂されました。主なポイントとしては、記事のタイトル、日付、およびトピックが修正され、内容がより明確かつ詳細に整理されました。特に、課金モデルの説明が改善され、固定料金と従量課金に関する情報がわかりやすく表現されています。また、料金計算機の使用やキャパシティプランニングシートの導入方法が強調され、コスト管理の実践的なヒントが追加されています。加えて、プレミアム機能の料金や、それらがどのように請求されるかについての詳細も含まれています。全体的に、ガイドはユーザーがコストをより適切に計画し、管理するための手助けをする内容に強化されています。

articles/search/search-try-for-free.md

Diff
@@ -8,7 +8,7 @@ author: HeidiSteen
 ms.author: heidist
 ms.service: azure-ai-search
 ms.topic: conceptual
-ms.date: 01/15/2025
+ms.date: 06/11/2025
 ms.custom: references_regions
 ---
 
@@ -49,9 +49,6 @@ Once you sign up, you can immediately use either of these links to access Azure
 
      We recommend Basic for larger data files and more indexes, or Free if your files are less than 50 MB. Basic has more features and storage, but it's billable for the lifetime of the service and it might consume about one third of your available credits if you retain it for the entire trial period.
 
-> [!TIP]
-> Azure AI Search and Azure OpenAI must be in the [same region](search-create-service-portal.md#regions-with-the-most-overlap).
-
 ## Step three: Have a plan for next steps
 
 The trial period can go by quick. Having a plan of action can help you get the most out of your trial subscription. For Azure AI Search, most newer customers and developers are exploring RAG patterns.
@@ -72,37 +69,31 @@ Application frontends are useful if you're prototyping a solution for a wider au
 
 ## Check regions
 
-Azure AI Search has integrated operations with applied AI in the Azure cloud. Integration depends on services running within the same region. This is a requirement for data residency and for efficient operations.
-
-Verifying region availability can save you time and frustration because you need to choose a region that supports all of the services you want to use.
+Azure AI Search offers integrated operations with applied AI in the Azure cloud. For data residency and efficient operations, integration typically depends on services running within the same region.
 
-Start here if you want to use built-in vectorization or chat models:
+> [!NOTE]
+> The same-region requirement doesn't apply to Azure OpenAI and Azure AI Foundry for interoperability with Azure AI Search. However, using the same region can improve performance and reduce latency.
 
-- [Azure OpenAI region list](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability)
-- [Azure AI Vision region list](/azure/ai-services/computer-vision/overview-image-analysis?tabs=4-0#region-availability)
-- [Azure AI Foundry region list](/azure/ai-foundry/reference/region-support)
+For [AI enrichment](cognitive-search-concept-intro.md), [integrated vectorization](vector-search-integrated-vectorization.md), and [multimodal search](multimodal-search-overview.md) powered by Azure AI services, you must create Azure AI Search and Azure AI services multi-service in the same region. This is required for [billing purposes](cognitive-search-attach-cognitive-services.md).
 
-Continue with the following link to confirm region and tier availability for AI Search:
+Before you create these resources:
 
-- [Azure AI Search region list](search-region-support.md). This list identifies region support for Azure AI Search, applied AI (Azure AI services multi-service), and semantic ranking. You don't need a separate region check for applied AI.
++ Check [Azure AI Search regions](search-region-support.md). The **AI enrichment** column indicates whether Azure AI Search and Azure AI services multi-service are in the same region.
 
-> [!TIP]
-> Currently, these regions provide the most overlap and capacity: **East US**, **East US2**, **Central US​​**, and **South Central** in the Americas; **UK South** or **Switzerland North** in Europe; **Australia East** in Asia Pacific.
->
-> For Azure AI Vision and AI Search interoperability, choose one of these regions: **East US**, **West US**, **Switzerland North**, **Korea Central**, **South East Asia**, or **Australia East**.
++ Check [Azure AI Vision regions](/azure/ai-services/computer-vision/overview-image-analysis?tabs=4-0#region-availability). The **Multimodal embeddings** column indicates regional support for the multimodal APIs that enable text and image vectorization. Azure AI Vision provides these APIs, which you access through an Azure AI services multi-service resource. Ensure that your search service and multi-service resource are in the same region as the multimodal APIs.
 
 ### Create services
 
-1. [Create a search service](search-create-service-portal.md) if you don't have one already, choosing the Basic tier and a region that also offers a model provider. Most Azure AI Search regions provide higher capacity storage limits. There are just a few that have older and lower limits. For the Basic tier, as you install, confirm that you have a 15-GB partition.
+1. [Create a search service](search-create-service-portal.md) if you don't have one already. Choose the Basic tier and, if applicable, the same region as Azure AI services multi-service. Most Azure AI Search regions provide higher capacity storage limits. There are just a few that have older and lower limits. For the Basic tier, as you install, confirm that you have a 15-GB partition.
 
    > [!div class="nextstepaction"]
    > [Create a search service](search-create-service-portal.md)
 
-1. [Create an Azure Storage account](/azure/storage/common/storage-account-create?tabs=azure-portal), choosing a general purpose account and using default settings.
+1. [Create an Azure Storage account](/azure/storage/common/storage-account-create?tabs=azure-portal). Choose a general purpose account and use default settings.
 
-1. [Create an Azure OpenAI resource](/azure/ai-services/openai/how-to/create-resource?pivots=web-portal) as your model provider.
+1. [Create an Azure OpenAI resource](/azure/ai-services/openai/how-to/create-resource?pivots=web-portal).
 
-1. [Create an Azure AI services multi-service account](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills?pivots=azportal) to use applied AI in your indexing workloads and Azure AI Vision multimodal APIs as an embedding model provider. You can create and transform content during indexing if applied AI can be attached. For multimodal APIs, make sure you choose a region that provides those APIs. Look for this tile in Azure Marketplace:
+1. [Create an Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills?pivots=azportal) to use applied AI in your indexing workloads and Azure AI Vision multimodal APIs as an embedding model provider. You can create and transform content during indexing if applied AI can be attached. For multimodal APIs, make sure you choose a region that provides those APIs. Look for this tile in Azure Marketplace:
 
    :::image type="content" source="./media/search-try-for-free/azure-ai-service-marketplace.png" alt-text="Screenshot of the Azure AI Services offering in Azure Marketplace.":::
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "Azure AI Searchの無料トライアルガイドの更新(Locale: ja_JP)"
}

Explanation

この変更では、Azure AI Searchの無料トライアルに関するガイドが改訂され、内容が最新の情報に基づいて更新されました。主な変更点には、日付の更新や、Azure AI Searchと関連サービスに関する情報の整理が含まれています。特に、地域に関する要件が強調され、Azure AI SearchとAzure AIサービスが同じ地域で動作する必要があることが明示化されました。また、資料の整然としたレイアウトとともに、地域の確認のための新しいリンクが追加されています。これにより、ユーザーは最適な地域を選択する際の手助けを得ることができ、使いやすさが向上しています。全体として、この更新はAzure AI Searchの利用を促進し、トライアル期間を最大限に活用できるよう設計されています。

articles/search/tutorial-document-extraction-multimodal-embeddings.md

Diff
@@ -9,7 +9,7 @@ ms.author: mdonovan
 ms.service: azure-ai-search
 ms.custom:
 ms.topic: tutorial
-ms.date: 05/29/2025
+ms.date: 06/11/2025
 
 ---
 
@@ -52,7 +52,7 @@ Using a REST client and the [Search REST APIs](/rest/api/searchservice/) you wil
 + An [Azure AI services multi-service account](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills) for image vectorization. Image vectorization requires Azure AI Vision multimodal embeddings. For an updated list of regions, see the [Azure AI Vision documentation](/azure/ai-services/computer-vision/overview-image-analysis#region-availability).
 
 + [Azure AI Search](search-what-is-azure-search.md), with a managed identity. [Create a service](search-create-service-portal.md) or [find an existing service](https://portal.azure.com/#blade/HubsExtension/BrowseResourceBlade/resourceType/Microsoft.Search%2FsearchServices) in your current subscription.  
-  > Your service must be on the Basic tier or higher—this tutorial is not supported on the Free tier. Additionally, it must be in the [same region as Azure AI services multi-service](search-create-service-portal.md#regions-with-the-most-overlap).
+  > Your service must be on the Basic tier or higher—this tutorial isn't supported on the Free tier. It must also be in the same region as your multi-service account.
 
 + [Visual Studio Code](https://code.visualstudio.com/download) with a [REST client](https://marketplace.visualstudio.com/items?itemName=humao.rest-client).
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "マルチモーダル埋め込みを使用したドキュメント抽出チュートリアルの更新(Locale: ja_JP)"
}

Explanation

この変更では、「マルチモーダル埋め込みを使用したドキュメント抽出チュートリアル」に関する内容が更新されました。主な変更点には、ドキュメントの日付更新と説明文の一部修正が含まれています。特に、Azure AI Visionを利用した画像ベクトル化に関する要件が強調され、サービスが同じ地域に存在する必要があることが明確にされています。また、チュートリアルの前提条件に関しては、基本プラン以上でなければならない旨が明記され、より分かりやすくなっています。これにより、ユーザーがチュートリアルを進める際の条件や設定についての理解が深まります。全体的に、この更新はチュートリアルの精度と使いやすさを向上させることを目的としています。

articles/search/tutorial-document-layout-multimodal-embeddings.md

Diff
@@ -9,7 +9,7 @@ ms.author: rawan
 ms.service: azure-ai-search
 ms.custom:
 ms.topic: tutorial
-ms.date: 05/29/2025
+ms.date: 06/11/2025
 
 ---
 
@@ -47,7 +47,7 @@ Using a REST client and the [Search REST APIs](/rest/api/searchservice/), you wi
 
 + An [Azure AI services multi-service account](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills) for image vectorization. Image vectorization requires Azure AI Vision multimodal embeddings. For an updated list of regions, see the [Azure AI Vision documentation](/azure/ai-services/computer-vision/overview-image-analysis#region-availability).
 
-+ [Azure AI Search](search-what-is-azure-search.md), with a managed identity. [Create a service](search-create-service-portal.md) or [find an existing service](https://portal.azure.com/#blade/HubsExtension/BrowseResourceBlade/resourceType/Microsoft.Search%2FsearchServices) in your current subscription. Your service must be on the Basic tier or higher—this tutorial isn't supported on the Free tier. Additionally, it must be in the [same region as Azure AI services multi-service](search-create-service-portal.md#regions-with-the-most-overlap).
++ [Azure AI Search](search-what-is-azure-search.md), with a managed identity. [Create a service](search-create-service-portal.md) or [find an existing service](https://portal.azure.com/#blade/HubsExtension/BrowseResourceBlade/resourceType/Microsoft.Search%2FsearchServices) in your current subscription. Your service must be on the Basic tier or higher—this tutorial isn't supported on the Free tier. It must also be in the same region as your multi-service account.
 
 + [Visual Studio Code](https://code.visualstudio.com/download) with a [REST client](https://marketplace.visualstudio.com/items?itemName=humao.rest-client).
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "マルチモーダル埋め込みを用いたドキュメントレイアウトチュートリアルの更新(Locale: ja_JP)"
}

Explanation

この変更では、「マルチモーダル埋め込みを用いたドキュメントレイアウトチュートリアル」が更新されました。具体的には、チュートリアルの日付が更新され、関連する情報が明確に修正されています。特に、Azure AI Visionを使用した画像ベクトル化に必要な条件が強調されており、Azure AI サービスのマルチサービスアカウントが同じ地域に存在する必要がある旨が明記されています。また、基本プラン以上でのサービスを利用する必要がある点についても、分かりやすく説明されています。これにより、ユーザーはチュートリアルの実施に必要な条件をより理解しやすくなっています。全体として、この更新はチュートリアルの整合性と実用性を向上させることを目的としています。

articles/search/tutorial-rag-build-solution-maximize-relevance.md

Diff
@@ -10,7 +10,7 @@ ms.service: azure-ai-search
 ms.custom:
   - ignite-2024
 ms.topic: tutorial
-ms.date: 03/11/2025
+ms.date: 06/11/2025
 ---
 
 # Tutorial: Maximize relevance (RAG in Azure AI Search)
@@ -34,9 +34,9 @@ This tutorial updates the search index created by the [indexing pipeline](tutori
 
 - [Visual Studio Code](https://code.visualstudio.com/download) with the [Python extension](https://marketplace.visualstudio.com/items?itemName=ms-python.python) and the [Jupyter package](https://pypi.org/project/jupyter/).
 
-- [Azure AI Search](search-create-service-portal.md), Basic tier or higher for managed identity and semantic ranking, in the same region as Azure OpenAI and Azure AI Services.
+- [Azure AI Search](search-create-service-portal.md), Basic tier or higher for managed identity and semantic ranking.
 
-- [Azure OpenAI](/azure/ai-services/openai/how-to/create-resource), with a deployment of text-embedding-002 and gpt-35-turbo, in the same region as Azure AI Search.
+- [Azure OpenAI](/azure/ai-services/openai/how-to/create-resource), with a deployment of text-embedding-002 and gpt-35-turbo.
 
 ## Download the sample
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "関連性最大化チュートリアルの改訂(Locale: ja_JP)"
}

Explanation

この変更では、「RAG(Retrieval-Augmented Generation)を使用した関連性最大化チュートリアル」が更新されました。主な変更点は、ドキュメントの日付が更新され、特定の前提条件から地域に関する記述が削除されたことです。具体的には、Azure AI Search および Azure OpenAI サービスに必要な条件が簡略化され、地域に関する詳細が省略されました。この変更により、チュートリアルの内容がさらに明確になり、ユーザーが必要なサービスを設定する際の理解が深まることが期待されます。また、Visual Studio Code や Python 拡張機能などの必要なツールに関する情報も残っており、依然としてユーザーがチュートリアルを実施する際に必要なリソースは網羅されています。全体的に、この更新はチュートリアルの現行性と実用性を高めることを目的としています。

articles/search/tutorial-rag-build-solution-models.md

Diff
@@ -8,7 +8,7 @@ ms.author: heidist
 ms.service: azure-ai-search
 ms.topic: tutorial
 ms.custom: references_regions
-ms.date: 05/30/2025
+ms.date: 06/11/2025
 
 ---
 
@@ -33,21 +33,11 @@ If you don't have an Azure subscription, create a [free account](https://azure.m
 
 - An **Owner** or **User Access Administrator** role on your Azure subscription, necessary for creating role assignments. You use at least three Azure resources in this tutorial. The connections are authenticated using Microsoft Entra ID, which requires the ability to create roles. Role assignments for connecting to models are documented in this article. If you can't create roles, you can use [API keys](search-security-api-keys.md) instead.
 
-- A model provider, such as [Azure OpenAI](/azure/ai-services/openai/how-to/create-resource), Azure AI Vision via an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills), or [Azure AI Foundry](https://ai.azure.com/?cid=learnDocs).
+- A model provider, such as [Azure OpenAI](/azure/ai-services/openai/how-to/create-resource), Azure AI Vision via an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills), or [Azure AI Foundry](https://ai.azure.com/?cid=learnDocs). For Azure AI Vision, ensure that your multi-service resource is in the same region as [Azure AI Search](search-region-support.md) and the [Azure AI Vision multimodal APIs](/azure/ai-services/computer-vision/overview-image-analysis?tabs=4-0#region-availability).
 
   We use Azure OpenAI in this tutorial. Other providers are listed so that you know your options for integrated vectorization.
 
-- Azure AI Search, Basic tier or higher provides a [managed identity](search-howto-managed-identities-data-sources.md) used in role assignments. 
-
-- A shared region. To complete all of the tutorials in this series, the region must support both Azure AI Search and the model provider. See supported regions for:
-
-  - [Azure OpenAI regions](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability)
-
-  - [Azure AI Vision regions](/azure/ai-services/computer-vision/overview-image-analysis?tabs=4-0#region-availability)
-
-  - [Azure AI Foundry regions](/azure/ai-foundry/reference/region-support)
-
-  - [Azure AI Search regions](search-region-support.md)
+- Azure AI Search, Basic tier or higher provides a [managed identity](search-howto-managed-identities-data-sources.md) used in role assignments.
 
 ## Review models supporting built-in vectorization
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "RAGによるソリューションモデルチュートリアルの更新(Locale: ja_JP)"
}

Explanation

この変更では、「RAG(Retrieval-Augmented Generation)を使用したソリューションモデルチュートリアル」が更新されました。主な変更点は、ドキュメントの日付の更新や、前提条件の一部が簡略化されたことにあります。特に、Azure AI Vision に関連する条件が強調され、そのサービスが Azure AI Search と同じ地域に配置される必要があることが明記されました。また、役割の作成に必要な Azure サブスクリプションの権限に関する記述も簡潔になり、役割を作成できない場合に API キーを使用する選択肢が示されています。さらに、Azure AI Search の基本プラン以上が役割の割り当てで利用できることが残されていますが、地域に関する要件が削除されて、よりスムーズな理解が可能になっています。この変更により、ユーザーにとって必要な情報が明確に整理され、チュートリアルの実施が容易になることが期待されます。全体として、この更新はチュートリアルの現行性とユーザーフレンドリーさを向上させることを意図しています。

articles/search/tutorial-rag-build-solution-pipeline.md

Diff
@@ -10,7 +10,7 @@ ms.service: azure-ai-search
 ms.custom:
   - ignite-2024
 ms.topic: tutorial
-ms.date: 05/08/2025
+ms.date: 06/11/2025
 ---
 
 # Tutorial: Build an indexing pipeline for RAG on Azure AI Search
@@ -37,9 +37,9 @@ If you don't have an Azure subscription, create a [free account](https://azure.m
 
 - [Azure Storage](/azure/storage/common/storage-account-create) general purpose account. This exercise uploads PDF files into blob storage for automated indexing.
 
-- [Azure AI Search](search-create-service-portal.md), Basic tier or above for managed identity and semantic ranking. Choose a region that's shared with Azure OpenAI and Azure AI Services.
+- [Azure AI Search](search-create-service-portal.md), Basic tier or above for managed identity and semantic ranking. Choose a region that's shared with Azure AI services.
 
-- [Azure OpenAI](/azure/ai-services/openai/how-to/create-resource), with a deployment of text-embedding-3-large, in the same region as Azure AI Search. For more information about embedding models used in RAG solutions, see [Choose embedding models for RAG in Azure AI Search](tutorial-rag-build-solution-models.md).
+- [Azure OpenAI](/azure/ai-services/openai/how-to/create-resource), with a deployment of text-embedding-3-large. For more information about embedding models used in RAG solutions, see [Choose embedding models for RAG in Azure AI Search](tutorial-rag-build-solution-models.md).
 
 - [Azure AI services multi-service account](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills), in the same region as Azure AI Search. This resource is used for the Entity Recognition skill that detects locations in your content.
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "RAG用インデキシングパイプライン構築チュートリアルの更新(Locale: ja_JP)"
}

Explanation

この変更では、「Azure AI Search における RAG(Retrieval-Augmented Generation)用インデキシングパイプライン構築チュートリアル」が更新されました。主な変更点は、ドキュメントの日付が更新されたことと、一部の前提条件が簡潔になったことです。具体的には、Azure AI Search や Azure OpenAI に必要な地域についての記述が改訂されました。地域に関する条件が「Azure AI Services」との共有に限定され、明確さが増しました。また、テキスト埋め込みモデル「text-embedding-3-large」の展開に関する説明も簡素化され、どのようなサービスが利用できるのかがより明確に示されています。この変更により、ユーザーはインデキシングパイプラインを構築する際に必要な情報を効率的に理解できるようになり、チュートリアルが一層実用的になることが期待されます。全体として、この更新はチュートリアルの現行性と明瞭性を高めることを目的としています。

articles/search/vector-search-how-to-create-index.md

Diff
@@ -9,7 +9,7 @@ ms.service: azure-ai-search
 ms.custom:
   - ignite-2024
 ms.topic: how-to
-ms.date: 04/17/2025
+ms.date: 06/11/2025
 ---
 
 # Create a vector index
@@ -31,7 +31,7 @@ This article explains the workflow using the REST API for illustration. Once you
 
 ## Prerequisites
 
-+ Azure AI Search, in any region and on any tier. If you plan to use [integrated vectorization](vector-search-integrated-vectorization.md), Azure AI Search must be in the same region as the embedding models hosted on Azure OpenAI or in Azure AI Vision.
++ Azure AI Search, in any region and on any tier. If you plan to use [integrated vectorization](vector-search-integrated-vectorization.md) with Azure AI skills and vectorizers, Azure AI Search must be in the same region as the embedding models hosted on Azure AI Vision.
 
 + Your source documents must have [vector embeddings](vector-search-how-to-generate-embeddings.md) to upload to the index. Or, you can use [integrated vectorization](vector-search-integrated-vectorization.md) for this step.
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "ベクトルインデックス作成手順の更新(Locale: ja_JP)"
}

Explanation

この変更では、「ベクトルインデックスの作成方法」に関する文書が更新されました。主な変更点は、更新された日付の記載と、前提条件に関する説明の更新です。具体的には、Azure AI Search に関する要件が明確になり、統合ベクトル化機能を使用する際の条件がAzure OpenAIからAzure AI Visionに変更されました。これにより、ユーザーが必要とする地域の整合性が強調され、理解が深まります。また、ソース文書にはベクトル埋め込みが必要であることが追加され、インデックスへのアップロードに関する情報がさらに詳しく説明されるようになりました。全体として、この更新はドキュメントの情報の正確性とユーザーフレンドリーさを向上させることを目的としています。

articles/search/vector-search-how-to-generate-embeddings.md

Diff
@@ -9,7 +9,7 @@ ms.service: azure-ai-search
 ms.custom:
   - ignite-2023
 ms.topic: how-to
-ms.date: 05/21/2025
+ms.date: 06/11/2025
 ---
 
 # Generate embeddings for search queries and documents
@@ -30,7 +30,7 @@ If you want to handle data chunking and vectorization yourself, we provide demos
 
 ## Create resources in the same region
 
-Integrated vectorization usually requires resources to be in the same region:
+Although integrated vectorization with Azure OpenAI embedding models doesn't require resources to be in the same region, using the same region can improve performance and reduce latency.
 
 1. [Check regions for a text embedding model](/azure/ai-services/openai/concepts/models#model-summary-table-and-region-availability).
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "埋め込み生成に関する手順の更新(Locale: ja_JP)"
}

Explanation

この変更では、「検索クエリと文書のための埋め込み生成」という記事が更新されました。主な変更点は、記事の日付が更新され、埋め込みモデルに関する前提条件が明確化されたことです。具体的には、Azure OpenAI の埋め込みモデルを使用する際の「統合ベクトル化」についての説明が改訂され、リソースが同一地域に配置されている必要はないが、同じ地域を使用することで性能が向上し、遅延が減少する可能性があることが強調されました。この更新により、ユーザーは最適なパフォーマンスを得るためのリソース配置についてより正確な情報を得ることができます。全体として、この修正はユーザーの利便性を向上させることを目指しています。

articles/search/vector-search-integrated-vectorization.md

Diff
@@ -9,7 +9,7 @@ ms.service: azure-ai-search
 ms.custom:
   - ignite-2023
 ms.topic: conceptual
-ms.date: 05/08/2025
+ms.date: 06/11/2025
 ---
 
 # Integrated vector embedding in Azure AI Search
@@ -76,7 +76,7 @@ The diagram focuses on integrated vectorization, but your solution isn't limited
 
 ## Availability and pricing
 
-Integrated vectorization is available in all regions and tiers. However, if you're using Azure OpenAI and Azure AI skills and vectorizers, make sure your Azure AI services multi-service account is [available in the same regions as Azure AI Search](search-region-support.md).
+Integrated vectorization is available in all regions and tiers. However, if you're using Azure AI skills and vectorizers, make sure your Azure AI services multi-service resource is available in the [same region as Azure AI Search](search-region-support.md).
 
 If you're using a custom skill and an Azure hosting mechanism (such as an Azure function app, Azure Web App, and Azure Kubernetes), check the [Azure product by region page](https://azure.microsoft.com/explore/global-infrastructure/products-by-region/?products=search) for feature availability. 
 

Summary

{
    "modification_type": "minor update",
    "modification_title": "統合ベクトル化に関する文書の更新(Locale: ja_JP)"
}

Explanation

この変更では、「Azure AI Search における統合ベクトル埋め込み」という記事が改訂されました。主な変更点は、文書の日付が更新されたことと、Azure AI サービスのマルチサービスアカウントに関する説明の内容が修正された点です。具体的には、Azure OpenAI の利用時に、Azure AI Skills およびベクトライザーが同じ地域に展開されている必要がある旨が強調され、リソースが「マルチサービスリソース」として適切に指定されています。この修正により、ユーザーは統合ベクトル化を正しく利用するために必要な地域の整合性についてより明確な情報を得られるようになります。また、全体的に文書の正確性が向上しています。